This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppggic.o | |- O = ( oppG ` G ) |
|
| Assertion | oppgsubm | |- ( SubMnd ` G ) = ( SubMnd ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppggic.o | |- O = ( oppG ` G ) |
|
| 2 | submrcl | |- ( x e. ( SubMnd ` G ) -> G e. Mnd ) |
|
| 3 | submrcl | |- ( x e. ( SubMnd ` O ) -> O e. Mnd ) |
|
| 4 | 1 | oppgmndb | |- ( G e. Mnd <-> O e. Mnd ) |
| 5 | 3 4 | sylibr | |- ( x e. ( SubMnd ` O ) -> G e. Mnd ) |
| 6 | ralcom | |- ( A. y e. x A. z e. x ( y ( +g ` G ) z ) e. x <-> A. z e. x A. y e. x ( y ( +g ` G ) z ) e. x ) |
|
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 9 | 7 1 8 | oppgplus | |- ( z ( +g ` O ) y ) = ( y ( +g ` G ) z ) |
| 10 | 9 | eleq1i | |- ( ( z ( +g ` O ) y ) e. x <-> ( y ( +g ` G ) z ) e. x ) |
| 11 | 10 | 2ralbii | |- ( A. z e. x A. y e. x ( z ( +g ` O ) y ) e. x <-> A. z e. x A. y e. x ( y ( +g ` G ) z ) e. x ) |
| 12 | 6 11 | bitr4i | |- ( A. y e. x A. z e. x ( y ( +g ` G ) z ) e. x <-> A. z e. x A. y e. x ( z ( +g ` O ) y ) e. x ) |
| 13 | 12 | 3anbi3i | |- ( ( x C_ ( Base ` G ) /\ ( 0g ` G ) e. x /\ A. y e. x A. z e. x ( y ( +g ` G ) z ) e. x ) <-> ( x C_ ( Base ` G ) /\ ( 0g ` G ) e. x /\ A. z e. x A. y e. x ( z ( +g ` O ) y ) e. x ) ) |
| 14 | 13 | a1i | |- ( G e. Mnd -> ( ( x C_ ( Base ` G ) /\ ( 0g ` G ) e. x /\ A. y e. x A. z e. x ( y ( +g ` G ) z ) e. x ) <-> ( x C_ ( Base ` G ) /\ ( 0g ` G ) e. x /\ A. z e. x A. y e. x ( z ( +g ` O ) y ) e. x ) ) ) |
| 15 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 16 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 17 | 15 16 7 | issubm | |- ( G e. Mnd -> ( x e. ( SubMnd ` G ) <-> ( x C_ ( Base ` G ) /\ ( 0g ` G ) e. x /\ A. y e. x A. z e. x ( y ( +g ` G ) z ) e. x ) ) ) |
| 18 | 1 15 | oppgbas | |- ( Base ` G ) = ( Base ` O ) |
| 19 | 1 16 | oppgid | |- ( 0g ` G ) = ( 0g ` O ) |
| 20 | 18 19 8 | issubm | |- ( O e. Mnd -> ( x e. ( SubMnd ` O ) <-> ( x C_ ( Base ` G ) /\ ( 0g ` G ) e. x /\ A. z e. x A. y e. x ( z ( +g ` O ) y ) e. x ) ) ) |
| 21 | 4 20 | sylbi | |- ( G e. Mnd -> ( x e. ( SubMnd ` O ) <-> ( x C_ ( Base ` G ) /\ ( 0g ` G ) e. x /\ A. z e. x A. y e. x ( z ( +g ` O ) y ) e. x ) ) ) |
| 22 | 14 17 21 | 3bitr4d | |- ( G e. Mnd -> ( x e. ( SubMnd ` G ) <-> x e. ( SubMnd ` O ) ) ) |
| 23 | 2 5 22 | pm5.21nii | |- ( x e. ( SubMnd ` G ) <-> x e. ( SubMnd ` O ) ) |
| 24 | 23 | eqriv | |- ( SubMnd ` G ) = ( SubMnd ` O ) |