This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgbas.1 | |- O = ( oppG ` R ) |
|
| oppgid.2 | |- .0. = ( 0g ` R ) |
||
| Assertion | oppgid | |- .0. = ( 0g ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | |- O = ( oppG ` R ) |
|
| 2 | oppgid.2 | |- .0. = ( 0g ` R ) |
|
| 3 | ancom | |- ( ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) <-> ( ( y ( +g ` R ) x ) = y /\ ( x ( +g ` R ) y ) = y ) ) |
|
| 4 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 5 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 6 | 4 1 5 | oppgplus | |- ( x ( +g ` O ) y ) = ( y ( +g ` R ) x ) |
| 7 | 6 | eqeq1i | |- ( ( x ( +g ` O ) y ) = y <-> ( y ( +g ` R ) x ) = y ) |
| 8 | 4 1 5 | oppgplus | |- ( y ( +g ` O ) x ) = ( x ( +g ` R ) y ) |
| 9 | 8 | eqeq1i | |- ( ( y ( +g ` O ) x ) = y <-> ( x ( +g ` R ) y ) = y ) |
| 10 | 7 9 | anbi12i | |- ( ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) <-> ( ( y ( +g ` R ) x ) = y /\ ( x ( +g ` R ) y ) = y ) ) |
| 11 | 3 10 | bitr4i | |- ( ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) <-> ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) |
| 12 | 11 | ralbii | |- ( A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) <-> A. y e. ( Base ` R ) ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) |
| 13 | 12 | anbi2i | |- ( ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) ) <-> ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) ) |
| 14 | 13 | iotabii | |- ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 15 4 2 | grpidval | |- .0. = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) = y /\ ( y ( +g ` R ) x ) = y ) ) ) |
| 17 | 1 15 | oppgbas | |- ( Base ` R ) = ( Base ` O ) |
| 18 | eqid | |- ( 0g ` O ) = ( 0g ` O ) |
|
| 19 | 17 5 18 | grpidval | |- ( 0g ` O ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( +g ` O ) y ) = y /\ ( y ( +g ` O ) x ) = y ) ) ) |
| 20 | 14 16 19 | 3eqtr4i | |- .0. = ( 0g ` O ) |