This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submcl.p | |- .+ = ( +g ` M ) |
|
| Assertion | submcl | |- ( ( S e. ( SubMnd ` M ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submcl.p | |- .+ = ( +g ` M ) |
|
| 2 | submrcl | |- ( S e. ( SubMnd ` M ) -> M e. Mnd ) |
|
| 3 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 4 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 5 | 3 4 1 | issubm | |- ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ A. x e. S A. y e. S ( x .+ y ) e. S ) ) ) |
| 6 | 2 5 | syl | |- ( S e. ( SubMnd ` M ) -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ A. x e. S A. y e. S ( x .+ y ) e. S ) ) ) |
| 7 | 6 | ibi | |- ( S e. ( SubMnd ` M ) -> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ A. x e. S A. y e. S ( x .+ y ) e. S ) ) |
| 8 | 7 | simp3d | |- ( S e. ( SubMnd ` M ) -> A. x e. S A. y e. S ( x .+ y ) e. S ) |
| 9 | ovrspc2v | |- ( ( ( X e. S /\ Y e. S ) /\ A. x e. S A. y e. S ( x .+ y ) e. S ) -> ( X .+ Y ) e. S ) |
|
| 10 | 8 9 | sylan2 | |- ( ( ( X e. S /\ Y e. S ) /\ S e. ( SubMnd ` M ) ) -> ( X .+ Y ) e. S ) |
| 11 | 10 | ancoms | |- ( ( S e. ( SubMnd ` M ) /\ ( X e. S /\ Y e. S ) ) -> ( X .+ Y ) e. S ) |
| 12 | 11 | 3impb | |- ( ( S e. ( SubMnd ` M ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |