This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppggic.o | |- O = ( oppG ` G ) |
|
| oppgcntz.z | |- Z = ( Cntz ` G ) |
||
| Assertion | oppgcntz | |- ( Z ` A ) = ( ( Cntz ` O ) ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppggic.o | |- O = ( oppG ` G ) |
|
| 2 | oppgcntz.z | |- Z = ( Cntz ` G ) |
|
| 3 | eqcom | |- ( ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> ( y ( +g ` G ) x ) = ( x ( +g ` G ) y ) ) |
|
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | eqid | |- ( +g ` O ) = ( +g ` O ) |
|
| 6 | 4 1 5 | oppgplus | |- ( x ( +g ` O ) y ) = ( y ( +g ` G ) x ) |
| 7 | 4 1 5 | oppgplus | |- ( y ( +g ` O ) x ) = ( x ( +g ` G ) y ) |
| 8 | 6 7 | eqeq12i | |- ( ( x ( +g ` O ) y ) = ( y ( +g ` O ) x ) <-> ( y ( +g ` G ) x ) = ( x ( +g ` G ) y ) ) |
| 9 | 3 8 | bitr4i | |- ( ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> ( x ( +g ` O ) y ) = ( y ( +g ` O ) x ) ) |
| 10 | 9 | ralbii | |- ( A. y e. A ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> A. y e. A ( x ( +g ` O ) y ) = ( y ( +g ` O ) x ) ) |
| 11 | 10 | anbi2i | |- ( ( x e. ( Base ` G ) /\ A. y e. A ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) <-> ( x e. ( Base ` G ) /\ A. y e. A ( x ( +g ` O ) y ) = ( y ( +g ` O ) x ) ) ) |
| 12 | 11 | anbi2i | |- ( ( A C_ ( Base ` G ) /\ ( x e. ( Base ` G ) /\ A. y e. A ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) <-> ( A C_ ( Base ` G ) /\ ( x e. ( Base ` G ) /\ A. y e. A ( x ( +g ` O ) y ) = ( y ( +g ` O ) x ) ) ) ) |
| 13 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 14 | 13 2 | cntzrcl | |- ( x e. ( Z ` A ) -> ( G e. _V /\ A C_ ( Base ` G ) ) ) |
| 15 | 14 | simprd | |- ( x e. ( Z ` A ) -> A C_ ( Base ` G ) ) |
| 16 | 13 4 2 | elcntz | |- ( A C_ ( Base ` G ) -> ( x e. ( Z ` A ) <-> ( x e. ( Base ` G ) /\ A. y e. A ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) |
| 17 | 15 16 | biadanii | |- ( x e. ( Z ` A ) <-> ( A C_ ( Base ` G ) /\ ( x e. ( Base ` G ) /\ A. y e. A ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) |
| 18 | 1 13 | oppgbas | |- ( Base ` G ) = ( Base ` O ) |
| 19 | eqid | |- ( Cntz ` O ) = ( Cntz ` O ) |
|
| 20 | 18 19 | cntzrcl | |- ( x e. ( ( Cntz ` O ) ` A ) -> ( O e. _V /\ A C_ ( Base ` G ) ) ) |
| 21 | 20 | simprd | |- ( x e. ( ( Cntz ` O ) ` A ) -> A C_ ( Base ` G ) ) |
| 22 | 18 5 19 | elcntz | |- ( A C_ ( Base ` G ) -> ( x e. ( ( Cntz ` O ) ` A ) <-> ( x e. ( Base ` G ) /\ A. y e. A ( x ( +g ` O ) y ) = ( y ( +g ` O ) x ) ) ) ) |
| 23 | 21 22 | biadanii | |- ( x e. ( ( Cntz ` O ) ` A ) <-> ( A C_ ( Base ` G ) /\ ( x e. ( Base ` G ) /\ A. y e. A ( x ( +g ` O ) y ) = ( y ( +g ` O ) x ) ) ) ) |
| 24 | 12 17 23 | 3bitr4i | |- ( x e. ( Z ` A ) <-> x e. ( ( Cntz ` O ) ` A ) ) |
| 25 | 24 | eqriv | |- ( Z ` A ) = ( ( Cntz ` O ) ` A ) |