This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzinv.b | |- B = ( Base ` G ) |
|
| gsumzinv.0 | |- .0. = ( 0g ` G ) |
||
| gsumzinv.z | |- Z = ( Cntz ` G ) |
||
| gsumzinv.i | |- I = ( invg ` G ) |
||
| gsumzinv.g | |- ( ph -> G e. Grp ) |
||
| gsumzinv.a | |- ( ph -> A e. V ) |
||
| gsumzinv.f | |- ( ph -> F : A --> B ) |
||
| gsumzinv.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzinv.n | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsumzinv | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzinv.b | |- B = ( Base ` G ) |
|
| 2 | gsumzinv.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumzinv.z | |- Z = ( Cntz ` G ) |
|
| 4 | gsumzinv.i | |- I = ( invg ` G ) |
|
| 5 | gsumzinv.g | |- ( ph -> G e. Grp ) |
|
| 6 | gsumzinv.a | |- ( ph -> A e. V ) |
|
| 7 | gsumzinv.f | |- ( ph -> F : A --> B ) |
|
| 8 | gsumzinv.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 9 | gsumzinv.n | |- ( ph -> F finSupp .0. ) |
|
| 10 | eqid | |- ( oppG ` G ) = ( oppG ` G ) |
|
| 11 | 5 | grpmndd | |- ( ph -> G e. Mnd ) |
| 12 | 1 4 | grpinvf | |- ( G e. Grp -> I : B --> B ) |
| 13 | 5 12 | syl | |- ( ph -> I : B --> B ) |
| 14 | fco | |- ( ( I : B --> B /\ F : A --> B ) -> ( I o. F ) : A --> B ) |
|
| 15 | 13 7 14 | syl2anc | |- ( ph -> ( I o. F ) : A --> B ) |
| 16 | 10 4 | invoppggim | |- ( G e. Grp -> I e. ( G GrpIso ( oppG ` G ) ) ) |
| 17 | gimghm | |- ( I e. ( G GrpIso ( oppG ` G ) ) -> I e. ( G GrpHom ( oppG ` G ) ) ) |
|
| 18 | ghmmhm | |- ( I e. ( G GrpHom ( oppG ` G ) ) -> I e. ( G MndHom ( oppG ` G ) ) ) |
|
| 19 | 5 16 17 18 | 4syl | |- ( ph -> I e. ( G MndHom ( oppG ` G ) ) ) |
| 20 | eqid | |- ( Cntz ` ( oppG ` G ) ) = ( Cntz ` ( oppG ` G ) ) |
|
| 21 | 3 20 | cntzmhm2 | |- ( ( I e. ( G MndHom ( oppG ` G ) ) /\ ran F C_ ( Z ` ran F ) ) -> ( I " ran F ) C_ ( ( Cntz ` ( oppG ` G ) ) ` ( I " ran F ) ) ) |
| 22 | 19 8 21 | syl2anc | |- ( ph -> ( I " ran F ) C_ ( ( Cntz ` ( oppG ` G ) ) ` ( I " ran F ) ) ) |
| 23 | rnco2 | |- ran ( I o. F ) = ( I " ran F ) |
|
| 24 | 23 | fveq2i | |- ( Z ` ran ( I o. F ) ) = ( Z ` ( I " ran F ) ) |
| 25 | 10 3 | oppgcntz | |- ( Z ` ( I " ran F ) ) = ( ( Cntz ` ( oppG ` G ) ) ` ( I " ran F ) ) |
| 26 | 24 25 | eqtri | |- ( Z ` ran ( I o. F ) ) = ( ( Cntz ` ( oppG ` G ) ) ` ( I " ran F ) ) |
| 27 | 22 23 26 | 3sstr4g | |- ( ph -> ran ( I o. F ) C_ ( Z ` ran ( I o. F ) ) ) |
| 28 | 2 | fvexi | |- .0. e. _V |
| 29 | 28 | a1i | |- ( ph -> .0. e. _V ) |
| 30 | 1 | fvexi | |- B e. _V |
| 31 | 30 | a1i | |- ( ph -> B e. _V ) |
| 32 | 2 4 | grpinvid | |- ( G e. Grp -> ( I ` .0. ) = .0. ) |
| 33 | 5 32 | syl | |- ( ph -> ( I ` .0. ) = .0. ) |
| 34 | 29 7 13 6 31 9 33 | fsuppco2 | |- ( ph -> ( I o. F ) finSupp .0. ) |
| 35 | 1 2 3 10 11 6 15 27 34 | gsumzoppg | |- ( ph -> ( ( oppG ` G ) gsum ( I o. F ) ) = ( G gsum ( I o. F ) ) ) |
| 36 | 10 | oppgmnd | |- ( G e. Mnd -> ( oppG ` G ) e. Mnd ) |
| 37 | 11 36 | syl | |- ( ph -> ( oppG ` G ) e. Mnd ) |
| 38 | 1 3 11 37 6 19 7 8 2 9 | gsumzmhm | |- ( ph -> ( ( oppG ` G ) gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |
| 39 | 35 38 | eqtr3d | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |