This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound a finite sum based on the harmonic series, where the "strong" bound C only applies asymptotically, and there is a "weak" bound R for the remaining values. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumharmonic.a | |- ( ph -> A e. RR+ ) |
|
| fsumharmonic.t | |- ( ph -> ( T e. RR /\ 1 <_ T ) ) |
||
| fsumharmonic.r | |- ( ph -> ( R e. RR /\ 0 <_ R ) ) |
||
| fsumharmonic.b | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> B e. CC ) |
||
| fsumharmonic.c | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> C e. RR ) |
||
| fsumharmonic.0 | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> 0 <_ C ) |
||
| fsumharmonic.1 | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ T <_ ( A / n ) ) -> ( abs ` B ) <_ ( C x. n ) ) |
||
| fsumharmonic.2 | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( A / n ) < T ) -> ( abs ` B ) <_ R ) |
||
| Assertion | fsumharmonic | |- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumharmonic.a | |- ( ph -> A e. RR+ ) |
|
| 2 | fsumharmonic.t | |- ( ph -> ( T e. RR /\ 1 <_ T ) ) |
|
| 3 | fsumharmonic.r | |- ( ph -> ( R e. RR /\ 0 <_ R ) ) |
|
| 4 | fsumharmonic.b | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> B e. CC ) |
|
| 5 | fsumharmonic.c | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> C e. RR ) |
|
| 6 | fsumharmonic.0 | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> 0 <_ C ) |
|
| 7 | fsumharmonic.1 | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ T <_ ( A / n ) ) -> ( abs ` B ) <_ ( C x. n ) ) |
|
| 8 | fsumharmonic.2 | |- ( ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ ( A / n ) < T ) -> ( abs ` B ) <_ R ) |
|
| 9 | fzfid | |- ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
|
| 10 | elfznn | |- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
|
| 11 | 10 | adantl | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
| 12 | 11 | nncnd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. CC ) |
| 13 | 11 | nnne0d | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n =/= 0 ) |
| 14 | 4 12 13 | divcld | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( B / n ) e. CC ) |
| 15 | 9 14 | fsumcl | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) e. CC ) |
| 16 | 15 | abscld | |- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) e. RR ) |
| 17 | 4 | abscld | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( abs ` B ) e. RR ) |
| 18 | 17 11 | nndivred | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) e. RR ) |
| 19 | 9 18 | fsumrecl | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) e. RR ) |
| 20 | 9 5 | fsumrecl | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) C e. RR ) |
| 21 | 3 | simpld | |- ( ph -> R e. RR ) |
| 22 | 2 | simpld | |- ( ph -> T e. RR ) |
| 23 | 0red | |- ( ph -> 0 e. RR ) |
|
| 24 | 1red | |- ( ph -> 1 e. RR ) |
|
| 25 | 0lt1 | |- 0 < 1 |
|
| 26 | 25 | a1i | |- ( ph -> 0 < 1 ) |
| 27 | 2 | simprd | |- ( ph -> 1 <_ T ) |
| 28 | 23 24 22 26 27 | ltletrd | |- ( ph -> 0 < T ) |
| 29 | 22 28 | elrpd | |- ( ph -> T e. RR+ ) |
| 30 | 29 | relogcld | |- ( ph -> ( log ` T ) e. RR ) |
| 31 | 30 24 | readdcld | |- ( ph -> ( ( log ` T ) + 1 ) e. RR ) |
| 32 | 21 31 | remulcld | |- ( ph -> ( R x. ( ( log ` T ) + 1 ) ) e. RR ) |
| 33 | 20 32 | readdcld | |- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) e. RR ) |
| 34 | 9 14 | fsumabs | |- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) ( abs ` ( B / n ) ) ) |
| 35 | 4 12 13 | absdivd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( abs ` ( B / n ) ) = ( ( abs ` B ) / ( abs ` n ) ) ) |
| 36 | 11 | nnrpd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR+ ) |
| 37 | 36 | rprege0d | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( n e. RR /\ 0 <_ n ) ) |
| 38 | absid | |- ( ( n e. RR /\ 0 <_ n ) -> ( abs ` n ) = n ) |
|
| 39 | 37 38 | syl | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( abs ` n ) = n ) |
| 40 | 39 | oveq2d | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / ( abs ` n ) ) = ( ( abs ` B ) / n ) ) |
| 41 | 35 40 | eqtrd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( abs ` ( B / n ) ) = ( ( abs ` B ) / n ) ) |
| 42 | 41 | sumeq2dv | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( abs ` ( B / n ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) ) |
| 43 | 34 42 | breqtrd | |- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) ) |
| 44 | 1 29 | rpdivcld | |- ( ph -> ( A / T ) e. RR+ ) |
| 45 | 44 | rprege0d | |- ( ph -> ( ( A / T ) e. RR /\ 0 <_ ( A / T ) ) ) |
| 46 | flge0nn0 | |- ( ( ( A / T ) e. RR /\ 0 <_ ( A / T ) ) -> ( |_ ` ( A / T ) ) e. NN0 ) |
|
| 47 | 45 46 | syl | |- ( ph -> ( |_ ` ( A / T ) ) e. NN0 ) |
| 48 | 47 | nn0red | |- ( ph -> ( |_ ` ( A / T ) ) e. RR ) |
| 49 | 48 | ltp1d | |- ( ph -> ( |_ ` ( A / T ) ) < ( ( |_ ` ( A / T ) ) + 1 ) ) |
| 50 | fzdisj | |- ( ( |_ ` ( A / T ) ) < ( ( |_ ` ( A / T ) ) + 1 ) -> ( ( 1 ... ( |_ ` ( A / T ) ) ) i^i ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) = (/) ) |
|
| 51 | 49 50 | syl | |- ( ph -> ( ( 1 ... ( |_ ` ( A / T ) ) ) i^i ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) = (/) ) |
| 52 | nn0p1nn | |- ( ( |_ ` ( A / T ) ) e. NN0 -> ( ( |_ ` ( A / T ) ) + 1 ) e. NN ) |
|
| 53 | 47 52 | syl | |- ( ph -> ( ( |_ ` ( A / T ) ) + 1 ) e. NN ) |
| 54 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 55 | 53 54 | eleqtrdi | |- ( ph -> ( ( |_ ` ( A / T ) ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 56 | 44 | rpred | |- ( ph -> ( A / T ) e. RR ) |
| 57 | 1 | rpred | |- ( ph -> A e. RR ) |
| 58 | 22 28 | jca | |- ( ph -> ( T e. RR /\ 0 < T ) ) |
| 59 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
| 60 | lediv2 | |- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( T e. RR /\ 0 < T ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ T <-> ( A / T ) <_ ( A / 1 ) ) ) |
|
| 61 | 24 26 58 59 60 | syl211anc | |- ( ph -> ( 1 <_ T <-> ( A / T ) <_ ( A / 1 ) ) ) |
| 62 | 27 61 | mpbid | |- ( ph -> ( A / T ) <_ ( A / 1 ) ) |
| 63 | 57 | recnd | |- ( ph -> A e. CC ) |
| 64 | 63 | div1d | |- ( ph -> ( A / 1 ) = A ) |
| 65 | 62 64 | breqtrd | |- ( ph -> ( A / T ) <_ A ) |
| 66 | flword2 | |- ( ( ( A / T ) e. RR /\ A e. RR /\ ( A / T ) <_ A ) -> ( |_ ` A ) e. ( ZZ>= ` ( |_ ` ( A / T ) ) ) ) |
|
| 67 | 56 57 65 66 | syl3anc | |- ( ph -> ( |_ ` A ) e. ( ZZ>= ` ( |_ ` ( A / T ) ) ) ) |
| 68 | fzsplit2 | |- ( ( ( ( |_ ` ( A / T ) ) + 1 ) e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` ( |_ ` ( A / T ) ) ) ) -> ( 1 ... ( |_ ` A ) ) = ( ( 1 ... ( |_ ` ( A / T ) ) ) u. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
|
| 69 | 55 67 68 | syl2anc | |- ( ph -> ( 1 ... ( |_ ` A ) ) = ( ( 1 ... ( |_ ` ( A / T ) ) ) u. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
| 70 | 18 | recnd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) e. CC ) |
| 71 | 51 69 9 70 | fsumsplit | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) = ( sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) + sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) ) ) |
| 72 | fzfid | |- ( ph -> ( 1 ... ( |_ ` ( A / T ) ) ) e. Fin ) |
|
| 73 | ssun1 | |- ( 1 ... ( |_ ` ( A / T ) ) ) C_ ( ( 1 ... ( |_ ` ( A / T ) ) ) u. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) |
|
| 74 | 73 69 | sseqtrrid | |- ( ph -> ( 1 ... ( |_ ` ( A / T ) ) ) C_ ( 1 ... ( |_ ` A ) ) ) |
| 75 | 74 | sselda | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n e. ( 1 ... ( |_ ` A ) ) ) |
| 76 | 75 18 | syldan | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( ( abs ` B ) / n ) e. RR ) |
| 77 | 72 76 | fsumrecl | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) e. RR ) |
| 78 | fzfid | |- ( ph -> ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) e. Fin ) |
|
| 79 | ssun2 | |- ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) C_ ( ( 1 ... ( |_ ` ( A / T ) ) ) u. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) |
|
| 80 | 79 69 | sseqtrrid | |- ( ph -> ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) ) |
| 81 | 80 | sselda | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n e. ( 1 ... ( |_ ` A ) ) ) |
| 82 | 81 18 | syldan | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) e. RR ) |
| 83 | 78 82 | fsumrecl | |- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) e. RR ) |
| 84 | 75 5 | syldan | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> C e. RR ) |
| 85 | 72 84 | fsumrecl | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) C e. RR ) |
| 86 | fznnfl | |- ( ( A / T ) e. RR -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> ( n e. NN /\ n <_ ( A / T ) ) ) ) |
|
| 87 | 56 86 | syl | |- ( ph -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> ( n e. NN /\ n <_ ( A / T ) ) ) ) |
| 88 | 87 | simplbda | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n <_ ( A / T ) ) |
| 89 | 36 | rpred | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR ) |
| 90 | 57 | adantr | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> A e. RR ) |
| 91 | 58 | adantr | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( T e. RR /\ 0 < T ) ) |
| 92 | lemuldiv2 | |- ( ( n e. RR /\ A e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( ( T x. n ) <_ A <-> n <_ ( A / T ) ) ) |
|
| 93 | 89 90 91 92 | syl3anc | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( T x. n ) <_ A <-> n <_ ( A / T ) ) ) |
| 94 | 22 | adantr | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> T e. RR ) |
| 95 | 94 90 36 | lemuldivd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( T x. n ) <_ A <-> T <_ ( A / n ) ) ) |
| 96 | 93 95 | bitr3d | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( n <_ ( A / T ) <-> T <_ ( A / n ) ) ) |
| 97 | 75 96 | syldan | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( n <_ ( A / T ) <-> T <_ ( A / n ) ) ) |
| 98 | 88 97 | mpbid | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> T <_ ( A / n ) ) |
| 99 | 7 | ex | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( T <_ ( A / n ) -> ( abs ` B ) <_ ( C x. n ) ) ) |
| 100 | 75 99 | syldan | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( T <_ ( A / n ) -> ( abs ` B ) <_ ( C x. n ) ) ) |
| 101 | 98 100 | mpd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( abs ` B ) <_ ( C x. n ) ) |
| 102 | 75 4 | syldan | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> B e. CC ) |
| 103 | 102 | abscld | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( abs ` B ) e. RR ) |
| 104 | 75 10 | syl | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n e. NN ) |
| 105 | 104 | nnrpd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n e. RR+ ) |
| 106 | 103 84 105 | ledivmul2d | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( ( ( abs ` B ) / n ) <_ C <-> ( abs ` B ) <_ ( C x. n ) ) ) |
| 107 | 101 106 | mpbird | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( ( abs ` B ) / n ) <_ C ) |
| 108 | 72 76 84 107 | fsumle | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) C ) |
| 109 | 9 5 6 74 | fsumless | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) C <_ sum_ n e. ( 1 ... ( |_ ` A ) ) C ) |
| 110 | 77 85 20 108 109 | letrd | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) C ) |
| 111 | 81 10 | syl | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n e. NN ) |
| 112 | 111 | nnrecred | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( 1 / n ) e. RR ) |
| 113 | 78 112 | fsumrecl | |- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) e. RR ) |
| 114 | 21 113 | remulcld | |- ( ph -> ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) e. RR ) |
| 115 | 21 | adantr | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> R e. RR ) |
| 116 | 115 | recnd | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> R e. CC ) |
| 117 | 111 | nncnd | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n e. CC ) |
| 118 | 111 | nnne0d | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n =/= 0 ) |
| 119 | 116 117 118 | divrecd | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( R / n ) = ( R x. ( 1 / n ) ) ) |
| 120 | 115 111 | nndivred | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( R / n ) e. RR ) |
| 121 | 119 120 | eqeltrrd | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( R x. ( 1 / n ) ) e. RR ) |
| 122 | 81 17 | syldan | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( abs ` B ) e. RR ) |
| 123 | 81 36 | syldan | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> n e. RR+ ) |
| 124 | noel | |- -. n e. (/) |
|
| 125 | elin | |- ( n e. ( ( 1 ... ( |_ ` ( A / T ) ) ) i^i ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) <-> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
|
| 126 | 51 | eleq2d | |- ( ph -> ( n e. ( ( 1 ... ( |_ ` ( A / T ) ) ) i^i ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) <-> n e. (/) ) ) |
| 127 | 125 126 | bitr3id | |- ( ph -> ( ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) <-> n e. (/) ) ) |
| 128 | 124 127 | mtbiri | |- ( ph -> -. ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
| 129 | imnan | |- ( ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) -> -. n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) <-> -. ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
|
| 130 | 128 129 | sylibr | |- ( ph -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) -> -. n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) ) |
| 131 | 130 | con2d | |- ( ph -> ( n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) -> -. n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) ) |
| 132 | 131 | imp | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> -. n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) |
| 133 | 86 | baibd | |- ( ( ( A / T ) e. RR /\ n e. NN ) -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> n <_ ( A / T ) ) ) |
| 134 | 56 10 133 | syl2an | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> n <_ ( A / T ) ) ) |
| 135 | 134 96 | bitrd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> T <_ ( A / n ) ) ) |
| 136 | 81 135 | syldan | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( n e. ( 1 ... ( |_ ` ( A / T ) ) ) <-> T <_ ( A / n ) ) ) |
| 137 | 132 136 | mtbid | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> -. T <_ ( A / n ) ) |
| 138 | 57 | adantr | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> A e. RR ) |
| 139 | 138 111 | nndivred | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( A / n ) e. RR ) |
| 140 | 22 | adantr | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> T e. RR ) |
| 141 | 139 140 | ltnled | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( A / n ) < T <-> -. T <_ ( A / n ) ) ) |
| 142 | 137 141 | mpbird | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( A / n ) < T ) |
| 143 | 8 | ex | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A / n ) < T -> ( abs ` B ) <_ R ) ) |
| 144 | 81 143 | syldan | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( A / n ) < T -> ( abs ` B ) <_ R ) ) |
| 145 | 142 144 | mpd | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( abs ` B ) <_ R ) |
| 146 | 122 115 123 145 | lediv1dd | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) <_ ( R / n ) ) |
| 147 | 146 119 | breqtrd | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( ( abs ` B ) / n ) <_ ( R x. ( 1 / n ) ) ) |
| 148 | 78 82 121 147 | fsumle | |- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) <_ sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( R x. ( 1 / n ) ) ) |
| 149 | 21 | recnd | |- ( ph -> R e. CC ) |
| 150 | 112 | recnd | |- ( ( ph /\ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ) -> ( 1 / n ) e. CC ) |
| 151 | 78 149 150 | fsummulc2 | |- ( ph -> ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) = sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( R x. ( 1 / n ) ) ) |
| 152 | 148 151 | breqtrrd | |- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) <_ ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) ) |
| 153 | 104 | nnrecred | |- ( ( ph /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( 1 / n ) e. RR ) |
| 154 | 72 153 | fsumrecl | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) e. RR ) |
| 155 | 154 | recnd | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) e. CC ) |
| 156 | 113 | recnd | |- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) e. CC ) |
| 157 | 11 | nnrecred | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / n ) e. RR ) |
| 158 | 157 | recnd | |- ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / n ) e. CC ) |
| 159 | 51 69 9 158 | fsumsplit | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) = ( sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) + sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) ) |
| 160 | 155 156 159 | mvrladdd | |- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) = sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) |
| 161 | 9 157 | fsumrecl | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) e. RR ) |
| 162 | 161 | adantr | |- ( ( ph /\ A < 1 ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) e. RR ) |
| 163 | 154 | adantr | |- ( ( ph /\ A < 1 ) -> sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) e. RR ) |
| 164 | 162 163 | resubcld | |- ( ( ph /\ A < 1 ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) e. RR ) |
| 165 | 0red | |- ( ( ph /\ A < 1 ) -> 0 e. RR ) |
|
| 166 | 31 | adantr | |- ( ( ph /\ A < 1 ) -> ( ( log ` T ) + 1 ) e. RR ) |
| 167 | fzfid | |- ( ( ph /\ A < 1 ) -> ( 1 ... ( |_ ` ( A / T ) ) ) e. Fin ) |
|
| 168 | 105 | adantlr | |- ( ( ( ph /\ A < 1 ) /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> n e. RR+ ) |
| 169 | 168 | rpreccld | |- ( ( ( ph /\ A < 1 ) /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( 1 / n ) e. RR+ ) |
| 170 | 169 | rpred | |- ( ( ( ph /\ A < 1 ) /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> ( 1 / n ) e. RR ) |
| 171 | 169 | rpge0d | |- ( ( ( ph /\ A < 1 ) /\ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ) -> 0 <_ ( 1 / n ) ) |
| 172 | 1 | adantr | |- ( ( ph /\ A < 1 ) -> A e. RR+ ) |
| 173 | 172 | rpge0d | |- ( ( ph /\ A < 1 ) -> 0 <_ A ) |
| 174 | simpr | |- ( ( ph /\ A < 1 ) -> A < 1 ) |
|
| 175 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 176 | 174 175 | breqtrrdi | |- ( ( ph /\ A < 1 ) -> A < ( 0 + 1 ) ) |
| 177 | 57 | adantr | |- ( ( ph /\ A < 1 ) -> A e. RR ) |
| 178 | 0z | |- 0 e. ZZ |
|
| 179 | flbi | |- ( ( A e. RR /\ 0 e. ZZ ) -> ( ( |_ ` A ) = 0 <-> ( 0 <_ A /\ A < ( 0 + 1 ) ) ) ) |
|
| 180 | 177 178 179 | sylancl | |- ( ( ph /\ A < 1 ) -> ( ( |_ ` A ) = 0 <-> ( 0 <_ A /\ A < ( 0 + 1 ) ) ) ) |
| 181 | 173 176 180 | mpbir2and | |- ( ( ph /\ A < 1 ) -> ( |_ ` A ) = 0 ) |
| 182 | 181 | oveq2d | |- ( ( ph /\ A < 1 ) -> ( 1 ... ( |_ ` A ) ) = ( 1 ... 0 ) ) |
| 183 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 184 | 182 183 | eqtrdi | |- ( ( ph /\ A < 1 ) -> ( 1 ... ( |_ ` A ) ) = (/) ) |
| 185 | 0ss | |- (/) C_ ( 1 ... ( |_ ` ( A / T ) ) ) |
|
| 186 | 184 185 | eqsstrdi | |- ( ( ph /\ A < 1 ) -> ( 1 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` ( A / T ) ) ) ) |
| 187 | 167 170 171 186 | fsumless | |- ( ( ph /\ A < 1 ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) |
| 188 | 162 163 | suble0d | |- ( ( ph /\ A < 1 ) -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ 0 <-> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) ) |
| 189 | 187 188 | mpbird | |- ( ( ph /\ A < 1 ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ 0 ) |
| 190 | 22 27 | logge0d | |- ( ph -> 0 <_ ( log ` T ) ) |
| 191 | 0le1 | |- 0 <_ 1 |
|
| 192 | 191 | a1i | |- ( ph -> 0 <_ 1 ) |
| 193 | 30 24 190 192 | addge0d | |- ( ph -> 0 <_ ( ( log ` T ) + 1 ) ) |
| 194 | 193 | adantr | |- ( ( ph /\ A < 1 ) -> 0 <_ ( ( log ` T ) + 1 ) ) |
| 195 | 164 165 166 189 194 | letrd | |- ( ( ph /\ A < 1 ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( log ` T ) + 1 ) ) |
| 196 | harmonicubnd | |- ( ( A e. RR /\ 1 <_ A ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) ) |
|
| 197 | 57 196 | sylan | |- ( ( ph /\ 1 <_ A ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) ) |
| 198 | harmoniclbnd | |- ( ( A / T ) e. RR+ -> ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) |
|
| 199 | 44 198 | syl | |- ( ph -> ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) |
| 200 | 199 | adantr | |- ( ( ph /\ 1 <_ A ) -> ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) |
| 201 | 1 | relogcld | |- ( ph -> ( log ` A ) e. RR ) |
| 202 | peano2re | |- ( ( log ` A ) e. RR -> ( ( log ` A ) + 1 ) e. RR ) |
|
| 203 | 201 202 | syl | |- ( ph -> ( ( log ` A ) + 1 ) e. RR ) |
| 204 | 44 | relogcld | |- ( ph -> ( log ` ( A / T ) ) e. RR ) |
| 205 | le2sub | |- ( ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) e. RR ) /\ ( ( ( log ` A ) + 1 ) e. RR /\ ( log ` ( A / T ) ) e. RR ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) /\ ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) ) ) |
|
| 206 | 161 154 203 204 205 | syl22anc | |- ( ph -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) /\ ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) ) ) |
| 207 | 206 | adantr | |- ( ( ph /\ 1 <_ A ) -> ( ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) /\ ( log ` ( A / T ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) ) ) |
| 208 | 197 200 207 | mp2and | |- ( ( ph /\ 1 <_ A ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) ) |
| 209 | 201 | recnd | |- ( ph -> ( log ` A ) e. CC ) |
| 210 | 24 | recnd | |- ( ph -> 1 e. CC ) |
| 211 | 30 | recnd | |- ( ph -> ( log ` T ) e. CC ) |
| 212 | 209 210 211 | pnncand | |- ( ph -> ( ( ( log ` A ) + 1 ) - ( ( log ` A ) - ( log ` T ) ) ) = ( 1 + ( log ` T ) ) ) |
| 213 | 1 29 | relogdivd | |- ( ph -> ( log ` ( A / T ) ) = ( ( log ` A ) - ( log ` T ) ) ) |
| 214 | 213 | oveq2d | |- ( ph -> ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) = ( ( ( log ` A ) + 1 ) - ( ( log ` A ) - ( log ` T ) ) ) ) |
| 215 | ax-1cn | |- 1 e. CC |
|
| 216 | addcom | |- ( ( ( log ` T ) e. CC /\ 1 e. CC ) -> ( ( log ` T ) + 1 ) = ( 1 + ( log ` T ) ) ) |
|
| 217 | 211 215 216 | sylancl | |- ( ph -> ( ( log ` T ) + 1 ) = ( 1 + ( log ` T ) ) ) |
| 218 | 212 214 217 | 3eqtr4d | |- ( ph -> ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) = ( ( log ` T ) + 1 ) ) |
| 219 | 218 | adantr | |- ( ( ph /\ 1 <_ A ) -> ( ( ( log ` A ) + 1 ) - ( log ` ( A / T ) ) ) = ( ( log ` T ) + 1 ) ) |
| 220 | 208 219 | breqtrd | |- ( ( ph /\ 1 <_ A ) -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( log ` T ) + 1 ) ) |
| 221 | 195 220 57 24 | ltlecasei | |- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( 1 / n ) ) <_ ( ( log ` T ) + 1 ) ) |
| 222 | 160 221 | eqbrtrrd | |- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` T ) + 1 ) ) |
| 223 | lemul2a | |- ( ( ( sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) e. RR /\ ( ( log ` T ) + 1 ) e. RR /\ ( R e. RR /\ 0 <_ R ) ) /\ sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) <_ ( ( log ` T ) + 1 ) ) -> ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) <_ ( R x. ( ( log ` T ) + 1 ) ) ) |
|
| 224 | 113 31 3 222 223 | syl31anc | |- ( ph -> ( R x. sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( 1 / n ) ) <_ ( R x. ( ( log ` T ) + 1 ) ) ) |
| 225 | 83 114 32 152 224 | letrd | |- ( ph -> sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) <_ ( R x. ( ( log ` T ) + 1 ) ) ) |
| 226 | 77 83 20 32 110 225 | le2addd | |- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` ( A / T ) ) ) ( ( abs ` B ) / n ) + sum_ n e. ( ( ( |_ ` ( A / T ) ) + 1 ) ... ( |_ ` A ) ) ( ( abs ` B ) / n ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) ) |
| 227 | 71 226 | eqbrtrd | |- ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( abs ` B ) / n ) <_ ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) ) |
| 228 | 16 19 33 43 227 | letrd | |- ( ph -> ( abs ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( B / n ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` A ) ) C + ( R x. ( ( log ` T ) + 1 ) ) ) ) |