This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmoniclbnd | |- ( A e. RR+ -> ( log ` A ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 2 | rprege0 | |- ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) |
|
| 3 | flge0nn0 | |- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 ) |
|
| 4 | 2 3 | syl | |- ( A e. RR+ -> ( |_ ` A ) e. NN0 ) |
| 5 | nn0p1nn | |- ( ( |_ ` A ) e. NN0 -> ( ( |_ ` A ) + 1 ) e. NN ) |
|
| 6 | 4 5 | syl | |- ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. NN ) |
| 7 | 6 | nnrpd | |- ( A e. RR+ -> ( ( |_ ` A ) + 1 ) e. RR+ ) |
| 8 | relogcl | |- ( ( ( |_ ` A ) + 1 ) e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. RR ) |
|
| 9 | 7 8 | syl | |- ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) e. RR ) |
| 10 | fzfid | |- ( A e. RR+ -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
|
| 11 | elfznn | |- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
|
| 12 | 11 | adantl | |- ( ( A e. RR+ /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) |
| 13 | 12 | nnrecred | |- ( ( A e. RR+ /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. RR ) |
| 14 | 10 13 | fsumrecl | |- ( A e. RR+ -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. RR ) |
| 15 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 16 | fllep1 | |- ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) ) |
|
| 17 | 15 16 | syl | |- ( A e. RR+ -> A <_ ( ( |_ ` A ) + 1 ) ) |
| 18 | id | |- ( A e. RR+ -> A e. RR+ ) |
|
| 19 | 18 7 | logled | |- ( A e. RR+ -> ( A <_ ( ( |_ ` A ) + 1 ) <-> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 20 | 17 19 | mpbid | |- ( A e. RR+ -> ( log ` A ) <_ ( log ` ( ( |_ ` A ) + 1 ) ) ) |
| 21 | harmonicbnd3 | |- ( ( |_ ` A ) e. NN0 -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
|
| 22 | 4 21 | syl | |- ( A e. RR+ -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
| 23 | 0re | |- 0 e. RR |
|
| 24 | emre | |- gamma e. RR |
|
| 25 | 23 24 | elicc2i | |- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) <-> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. RR /\ 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) /\ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <_ gamma ) ) |
| 26 | 25 | simp2bi | |- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) e. ( 0 [,] gamma ) -> 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 27 | 22 26 | syl | |- ( A e. RR+ -> 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) ) |
| 28 | 14 9 | subge0d | |- ( A e. RR+ -> ( 0 <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( ( |_ ` A ) + 1 ) ) ) <-> ( log ` ( ( |_ ` A ) + 1 ) ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) ) |
| 29 | 27 28 | mpbid | |- ( A e. RR+ -> ( log ` ( ( |_ ` A ) + 1 ) ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) |
| 30 | 1 9 14 20 29 | letrd | |- ( A e. RR+ -> ( log ` A ) <_ sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) |