This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lediv2 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( C / B ) <_ ( C / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0 | |- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
|
| 2 | rereccl | |- ( ( B e. RR /\ B =/= 0 ) -> ( 1 / B ) e. RR ) |
|
| 3 | 1 2 | syldan | |- ( ( B e. RR /\ 0 < B ) -> ( 1 / B ) e. RR ) |
| 4 | 3 | 3ad2ant2 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( 1 / B ) e. RR ) |
| 5 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 6 | rereccl | |- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
|
| 7 | 5 6 | syldan | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 8 | 7 | 3ad2ant1 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( 1 / A ) e. RR ) |
| 9 | simp3l | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> C e. RR ) |
|
| 10 | simp3r | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> 0 < C ) |
|
| 11 | lemul2 | |- ( ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) <_ ( 1 / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
|
| 12 | 4 8 9 10 11 | syl112anc | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) <_ ( 1 / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 13 | lerec | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
|
| 14 | 13 | 3adant3 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
| 15 | recn | |- ( C e. RR -> C e. CC ) |
|
| 16 | recn | |- ( B e. RR -> B e. CC ) |
|
| 17 | 16 | adantr | |- ( ( B e. RR /\ 0 < B ) -> B e. CC ) |
| 18 | 17 1 | jca | |- ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) |
| 19 | divrec | |- ( ( C e. CC /\ B e. CC /\ B =/= 0 ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
|
| 20 | 19 | 3expb | |- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 21 | 15 18 20 | syl2an | |- ( ( C e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 22 | 21 | 3adant2 | |- ( ( C e. RR /\ ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 23 | recn | |- ( A e. RR -> A e. CC ) |
|
| 24 | 23 | adantr | |- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 25 | 24 5 | jca | |- ( ( A e. RR /\ 0 < A ) -> ( A e. CC /\ A =/= 0 ) ) |
| 26 | divrec | |- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
|
| 27 | 26 | 3expb | |- ( ( C e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 28 | 15 25 27 | syl2an | |- ( ( C e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 29 | 28 | 3adant3 | |- ( ( C e. RR /\ ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 30 | 22 29 | breq12d | |- ( ( C e. RR /\ ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( C / B ) <_ ( C / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 31 | 30 | 3coml | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ C e. RR ) -> ( ( C / B ) <_ ( C / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 32 | 31 | 3adant3r | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( C / B ) <_ ( C / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 33 | 12 14 32 | 3bitr4d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( C / B ) <_ ( C / A ) ) ) |