This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzsplit2 | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> ( M ... N ) = ( ( M ... K ) u. ( ( K + 1 ) ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz | |- ( x e. ( M ... N ) -> x e. ZZ ) |
|
| 2 | 1 | zred | |- ( x e. ( M ... N ) -> x e. RR ) |
| 3 | eluzel2 | |- ( N e. ( ZZ>= ` K ) -> K e. ZZ ) |
|
| 4 | 3 | adantl | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> K e. ZZ ) |
| 5 | 4 | zred | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> K e. RR ) |
| 6 | lelttric | |- ( ( x e. RR /\ K e. RR ) -> ( x <_ K \/ K < x ) ) |
|
| 7 | 2 5 6 | syl2anr | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> ( x <_ K \/ K < x ) ) |
| 8 | elfzuz | |- ( x e. ( M ... N ) -> x e. ( ZZ>= ` M ) ) |
|
| 9 | elfz5 | |- ( ( x e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( x e. ( M ... K ) <-> x <_ K ) ) |
|
| 10 | 8 4 9 | syl2anr | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> ( x e. ( M ... K ) <-> x <_ K ) ) |
| 11 | simpl | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
|
| 12 | eluzelz | |- ( ( K + 1 ) e. ( ZZ>= ` M ) -> ( K + 1 ) e. ZZ ) |
|
| 13 | 11 12 | syl | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> ( K + 1 ) e. ZZ ) |
| 14 | eluz | |- ( ( ( K + 1 ) e. ZZ /\ x e. ZZ ) -> ( x e. ( ZZ>= ` ( K + 1 ) ) <-> ( K + 1 ) <_ x ) ) |
|
| 15 | 13 1 14 | syl2an | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> ( x e. ( ZZ>= ` ( K + 1 ) ) <-> ( K + 1 ) <_ x ) ) |
| 16 | elfzuz3 | |- ( x e. ( M ... N ) -> N e. ( ZZ>= ` x ) ) |
|
| 17 | 16 | adantl | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> N e. ( ZZ>= ` x ) ) |
| 18 | elfzuzb | |- ( x e. ( ( K + 1 ) ... N ) <-> ( x e. ( ZZ>= ` ( K + 1 ) ) /\ N e. ( ZZ>= ` x ) ) ) |
|
| 19 | 18 | rbaib | |- ( N e. ( ZZ>= ` x ) -> ( x e. ( ( K + 1 ) ... N ) <-> x e. ( ZZ>= ` ( K + 1 ) ) ) ) |
| 20 | 17 19 | syl | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> ( x e. ( ( K + 1 ) ... N ) <-> x e. ( ZZ>= ` ( K + 1 ) ) ) ) |
| 21 | zltp1le | |- ( ( K e. ZZ /\ x e. ZZ ) -> ( K < x <-> ( K + 1 ) <_ x ) ) |
|
| 22 | 4 1 21 | syl2an | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> ( K < x <-> ( K + 1 ) <_ x ) ) |
| 23 | 15 20 22 | 3bitr4d | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> ( x e. ( ( K + 1 ) ... N ) <-> K < x ) ) |
| 24 | 10 23 | orbi12d | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> ( ( x e. ( M ... K ) \/ x e. ( ( K + 1 ) ... N ) ) <-> ( x <_ K \/ K < x ) ) ) |
| 25 | 7 24 | mpbird | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... N ) ) -> ( x e. ( M ... K ) \/ x e. ( ( K + 1 ) ... N ) ) ) |
| 26 | elfzuz | |- ( x e. ( M ... K ) -> x e. ( ZZ>= ` M ) ) |
|
| 27 | 26 | adantl | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... K ) ) -> x e. ( ZZ>= ` M ) ) |
| 28 | simpr | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> N e. ( ZZ>= ` K ) ) |
|
| 29 | elfzuz3 | |- ( x e. ( M ... K ) -> K e. ( ZZ>= ` x ) ) |
|
| 30 | uztrn | |- ( ( N e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` x ) ) -> N e. ( ZZ>= ` x ) ) |
|
| 31 | 28 29 30 | syl2an | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... K ) ) -> N e. ( ZZ>= ` x ) ) |
| 32 | elfzuzb | |- ( x e. ( M ... N ) <-> ( x e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` x ) ) ) |
|
| 33 | 27 31 32 | sylanbrc | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( M ... K ) ) -> x e. ( M ... N ) ) |
| 34 | elfzuz | |- ( x e. ( ( K + 1 ) ... N ) -> x e. ( ZZ>= ` ( K + 1 ) ) ) |
|
| 35 | uztrn | |- ( ( x e. ( ZZ>= ` ( K + 1 ) ) /\ ( K + 1 ) e. ( ZZ>= ` M ) ) -> x e. ( ZZ>= ` M ) ) |
|
| 36 | 34 11 35 | syl2anr | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( ( K + 1 ) ... N ) ) -> x e. ( ZZ>= ` M ) ) |
| 37 | elfzuz3 | |- ( x e. ( ( K + 1 ) ... N ) -> N e. ( ZZ>= ` x ) ) |
|
| 38 | 37 | adantl | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( ( K + 1 ) ... N ) ) -> N e. ( ZZ>= ` x ) ) |
| 39 | 36 38 32 | sylanbrc | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ x e. ( ( K + 1 ) ... N ) ) -> x e. ( M ... N ) ) |
| 40 | 33 39 | jaodan | |- ( ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) /\ ( x e. ( M ... K ) \/ x e. ( ( K + 1 ) ... N ) ) ) -> x e. ( M ... N ) ) |
| 41 | 25 40 | impbida | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> ( x e. ( M ... N ) <-> ( x e. ( M ... K ) \/ x e. ( ( K + 1 ) ... N ) ) ) ) |
| 42 | elun | |- ( x e. ( ( M ... K ) u. ( ( K + 1 ) ... N ) ) <-> ( x e. ( M ... K ) \/ x e. ( ( K + 1 ) ... N ) ) ) |
|
| 43 | 41 42 | bitr4di | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> ( x e. ( M ... N ) <-> x e. ( ( M ... K ) u. ( ( K + 1 ) ... N ) ) ) ) |
| 44 | 43 | eqrdv | |- ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> ( M ... N ) = ( ( M ... K ) u. ( ( K + 1 ) ... N ) ) ) |