This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmonicubnd | |- ( ( A e. RR /\ 1 <_ A ) -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) <_ ( ( log ` A ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | |- ( ( A e. RR /\ 1 <_ A ) -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
|
| 2 | elfznn | |- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
|
| 3 | 2 | adantl | |- ( ( ( A e. RR /\ 1 <_ A ) /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) |
| 4 | 3 | nnrecred | |- ( ( ( A e. RR /\ 1 <_ A ) /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. RR ) |
| 5 | 1 4 | fsumrecl | |- ( ( A e. RR /\ 1 <_ A ) -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. RR ) |
| 6 | flge1nn | |- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. NN ) |
|
| 7 | 6 | nnrpd | |- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. RR+ ) |
| 8 | 7 | relogcld | |- ( ( A e. RR /\ 1 <_ A ) -> ( log ` ( |_ ` A ) ) e. RR ) |
| 9 | peano2re | |- ( ( log ` ( |_ ` A ) ) e. RR -> ( ( log ` ( |_ ` A ) ) + 1 ) e. RR ) |
|
| 10 | 8 9 | syl | |- ( ( A e. RR /\ 1 <_ A ) -> ( ( log ` ( |_ ` A ) ) + 1 ) e. RR ) |
| 11 | simpl | |- ( ( A e. RR /\ 1 <_ A ) -> A e. RR ) |
|
| 12 | 0red | |- ( ( A e. RR /\ 1 <_ A ) -> 0 e. RR ) |
|
| 13 | 1re | |- 1 e. RR |
|
| 14 | 13 | a1i | |- ( ( A e. RR /\ 1 <_ A ) -> 1 e. RR ) |
| 15 | 0lt1 | |- 0 < 1 |
|
| 16 | 15 | a1i | |- ( ( A e. RR /\ 1 <_ A ) -> 0 < 1 ) |
| 17 | simpr | |- ( ( A e. RR /\ 1 <_ A ) -> 1 <_ A ) |
|
| 18 | 12 14 11 16 17 | ltletrd | |- ( ( A e. RR /\ 1 <_ A ) -> 0 < A ) |
| 19 | 11 18 | elrpd | |- ( ( A e. RR /\ 1 <_ A ) -> A e. RR+ ) |
| 20 | 19 | relogcld | |- ( ( A e. RR /\ 1 <_ A ) -> ( log ` A ) e. RR ) |
| 21 | peano2re | |- ( ( log ` A ) e. RR -> ( ( log ` A ) + 1 ) e. RR ) |
|
| 22 | 20 21 | syl | |- ( ( A e. RR /\ 1 <_ A ) -> ( ( log ` A ) + 1 ) e. RR ) |
| 23 | harmonicbnd | |- ( ( |_ ` A ) e. NN -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. ( gamma [,] 1 ) ) |
|
| 24 | 6 23 | syl | |- ( ( A e. RR /\ 1 <_ A ) -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. ( gamma [,] 1 ) ) |
| 25 | emre | |- gamma e. RR |
|
| 26 | 25 13 | elicc2i | |- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. ( gamma [,] 1 ) <-> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. RR /\ gamma <_ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) /\ ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) <_ 1 ) ) |
| 27 | 26 | simp3bi | |- ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) e. ( gamma [,] 1 ) -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) <_ 1 ) |
| 28 | 24 27 | syl | |- ( ( A e. RR /\ 1 <_ A ) -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) <_ 1 ) |
| 29 | 5 8 14 | lesubadd2d | |- ( ( A e. RR /\ 1 <_ A ) -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( log ` ( |_ ` A ) ) ) <_ 1 <-> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) <_ ( ( log ` ( |_ ` A ) ) + 1 ) ) ) |
| 30 | 28 29 | mpbid | |- ( ( A e. RR /\ 1 <_ A ) -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) <_ ( ( log ` ( |_ ` A ) ) + 1 ) ) |
| 31 | flle | |- ( A e. RR -> ( |_ ` A ) <_ A ) |
|
| 32 | 31 | adantr | |- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) <_ A ) |
| 33 | 7 19 | logled | |- ( ( A e. RR /\ 1 <_ A ) -> ( ( |_ ` A ) <_ A <-> ( log ` ( |_ ` A ) ) <_ ( log ` A ) ) ) |
| 34 | 32 33 | mpbid | |- ( ( A e. RR /\ 1 <_ A ) -> ( log ` ( |_ ` A ) ) <_ ( log ` A ) ) |
| 35 | 8 20 14 34 | leadd1dd | |- ( ( A e. RR /\ 1 <_ A ) -> ( ( log ` ( |_ ` A ) ) + 1 ) <_ ( ( log ` A ) + 1 ) ) |
| 36 | 5 10 22 30 35 | letrd | |- ( ( A e. RR /\ 1 <_ A ) -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) <_ ( ( log ` A ) + 1 ) ) |