This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound a finite sum based on the harmonic series, where the "strong" bound C only applies asymptotically, and there is a "weak" bound R for the remaining values. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumharmonic.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| fsumharmonic.t | ⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 1 ≤ 𝑇 ) ) | ||
| fsumharmonic.r | ⊢ ( 𝜑 → ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) | ||
| fsumharmonic.b | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ ) | ||
| fsumharmonic.c | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐶 ∈ ℝ ) | ||
| fsumharmonic.0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 ≤ 𝐶 ) | ||
| fsumharmonic.1 | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) | ||
| fsumharmonic.2 | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝐴 / 𝑛 ) < 𝑇 ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) | ||
| Assertion | fsumharmonic | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumharmonic.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
| 2 | fsumharmonic.t | ⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 1 ≤ 𝑇 ) ) | |
| 3 | fsumharmonic.r | ⊢ ( 𝜑 → ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) | |
| 4 | fsumharmonic.b | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ ) | |
| 5 | fsumharmonic.c | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐶 ∈ ℝ ) | |
| 6 | fsumharmonic.0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 ≤ 𝐶 ) | |
| 7 | fsumharmonic.1 | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) | |
| 8 | fsumharmonic.2 | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝐴 / 𝑛 ) < 𝑇 ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) | |
| 9 | fzfid | ⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) | |
| 10 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 12 | 11 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℂ ) |
| 13 | 11 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≠ 0 ) |
| 14 | 4 12 13 | divcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐵 / 𝑛 ) ∈ ℂ ) |
| 15 | 9 14 | fsumcl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ∈ ℂ ) |
| 16 | 15 | abscld | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ∈ ℝ ) |
| 17 | 4 | abscld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 18 | 17 11 | nndivred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 19 | 9 18 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 20 | 9 5 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ∈ ℝ ) |
| 21 | 3 | simpld | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 22 | 2 | simpld | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 23 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 24 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 25 | 0lt1 | ⊢ 0 < 1 | |
| 26 | 25 | a1i | ⊢ ( 𝜑 → 0 < 1 ) |
| 27 | 2 | simprd | ⊢ ( 𝜑 → 1 ≤ 𝑇 ) |
| 28 | 23 24 22 26 27 | ltletrd | ⊢ ( 𝜑 → 0 < 𝑇 ) |
| 29 | 22 28 | elrpd | ⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 30 | 29 | relogcld | ⊢ ( 𝜑 → ( log ‘ 𝑇 ) ∈ ℝ ) |
| 31 | 30 24 | readdcld | ⊢ ( 𝜑 → ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
| 32 | 21 31 | remulcld | ⊢ ( 𝜑 → ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ∈ ℝ ) |
| 33 | 20 32 | readdcld | ⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ∈ ℝ ) |
| 34 | 9 14 | fsumabs | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( abs ‘ ( 𝐵 / 𝑛 ) ) ) |
| 35 | 4 12 13 | absdivd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ ( 𝐵 / 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝑛 ) ) ) |
| 36 | 11 | nnrpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 37 | 36 | rprege0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ) |
| 38 | absid | ⊢ ( ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) → ( abs ‘ 𝑛 ) = 𝑛 ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
| 41 | 35 40 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ ( 𝐵 / 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
| 42 | 41 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( abs ‘ ( 𝐵 / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
| 43 | 34 42 | breqtrd | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
| 44 | 1 29 | rpdivcld | ⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ∈ ℝ+ ) |
| 45 | 44 | rprege0d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 46 | flge0nn0 | ⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝑇 ) ) → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 ) | |
| 47 | 45 46 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 ) |
| 48 | 47 | nn0red | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) |
| 49 | 48 | ltp1d | ⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) < ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ) |
| 50 | fzdisj | ⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) < ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) → ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) = ∅ ) | |
| 51 | 49 50 | syl | ⊢ ( 𝜑 → ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) = ∅ ) |
| 52 | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ℕ ) | |
| 53 | 47 52 | syl | ⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ℕ ) |
| 54 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 55 | 53 54 | eleqtrdi | ⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 56 | 44 | rpred | ⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ∈ ℝ ) |
| 57 | 1 | rpred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 58 | 22 28 | jca | ⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) |
| 59 | 1 | rpregt0d | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 60 | lediv2 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝑇 ↔ ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) ) | |
| 61 | 24 26 58 59 60 | syl211anc | ⊢ ( 𝜑 → ( 1 ≤ 𝑇 ↔ ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) ) |
| 62 | 27 61 | mpbid | ⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) |
| 63 | 57 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 64 | 63 | div1d | ⊢ ( 𝜑 → ( 𝐴 / 1 ) = 𝐴 ) |
| 65 | 62 64 | breqtrd | ⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ≤ 𝐴 ) |
| 66 | flword2 | ⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐴 / 𝑇 ) ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) | |
| 67 | 56 57 65 66 | syl3anc | ⊢ ( 𝜑 → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 68 | fzsplit2 | ⊢ ( ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) | |
| 69 | 55 67 68 | syl2anc | ⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 70 | 18 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℂ ) |
| 71 | 51 69 9 70 | fsumsplit | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) ) |
| 72 | fzfid | ⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∈ Fin ) | |
| 73 | ssun1 | ⊢ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) | |
| 74 | 73 69 | sseqtrrid | ⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 75 | 74 | sselda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 76 | 75 18 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 77 | 72 76 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 78 | fzfid | ⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) | |
| 79 | ssun2 | ⊢ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) | |
| 80 | 79 69 | sseqtrrid | ⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 81 | 80 | sselda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 82 | 81 18 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 83 | 78 82 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 84 | 75 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝐶 ∈ ℝ ) |
| 85 | 72 84 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ∈ ℝ ) |
| 86 | fznnfl | ⊢ ( ( 𝐴 / 𝑇 ) ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) ) | |
| 87 | 56 86 | syl | ⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) ) |
| 88 | 87 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ≤ ( 𝐴 / 𝑇 ) ) |
| 89 | 36 | rpred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ ) |
| 90 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
| 91 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) |
| 92 | lemuldiv2 | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) | |
| 93 | 89 90 91 92 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 94 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑇 ∈ ℝ ) |
| 95 | 94 90 36 | lemuldivd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 96 | 93 95 | bitr3d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ≤ ( 𝐴 / 𝑇 ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 97 | 75 96 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 𝑛 ≤ ( 𝐴 / 𝑇 ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 98 | 88 97 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑇 ≤ ( 𝐴 / 𝑛 ) ) |
| 99 | 7 | ex | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑇 ≤ ( 𝐴 / 𝑛 ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
| 100 | 75 99 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 𝑇 ≤ ( 𝐴 / 𝑛 ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
| 101 | 98 100 | mpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) |
| 102 | 75 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝐵 ∈ ℂ ) |
| 103 | 102 | abscld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 104 | 75 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 105 | 104 | nnrpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
| 106 | 103 84 105 | ledivmul2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ 𝐶 ↔ ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
| 107 | 101 106 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ 𝐶 ) |
| 108 | 72 76 84 107 | fsumle | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ) |
| 109 | 9 5 6 74 | fsumless | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ) |
| 110 | 77 85 20 108 109 | letrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ) |
| 111 | 81 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 112 | 111 | nnrecred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 113 | 78 112 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 114 | 21 113 | remulcld | ⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 115 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑅 ∈ ℝ ) |
| 116 | 115 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑅 ∈ ℂ ) |
| 117 | 111 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℂ ) |
| 118 | 111 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≠ 0 ) |
| 119 | 116 117 118 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 / 𝑛 ) = ( 𝑅 · ( 1 / 𝑛 ) ) ) |
| 120 | 115 111 | nndivred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 / 𝑛 ) ∈ ℝ ) |
| 121 | 119 120 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 · ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 122 | 81 17 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 123 | 81 36 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 124 | noel | ⊢ ¬ 𝑛 ∈ ∅ | |
| 125 | elin | ⊢ ( 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) | |
| 126 | 51 | eleq2d | ⊢ ( 𝜑 → ( 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ 𝑛 ∈ ∅ ) ) |
| 127 | 125 126 | bitr3id | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ 𝑛 ∈ ∅ ) ) |
| 128 | 124 127 | mtbiri | ⊢ ( 𝜑 → ¬ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 129 | imnan | ⊢ ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) → ¬ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ ¬ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) | |
| 130 | 128 129 | sylibr | ⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) → ¬ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 131 | 130 | con2d | ⊢ ( 𝜑 → ( 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) → ¬ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
| 132 | 131 | imp | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ¬ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 133 | 86 | baibd | ⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 134 | 56 10 133 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 135 | 134 96 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 136 | 81 135 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 137 | 132 136 | mtbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ¬ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) |
| 138 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
| 139 | 138 111 | nndivred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑛 ) ∈ ℝ ) |
| 140 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑇 ∈ ℝ ) |
| 141 | 139 140 | ltnled | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 ↔ ¬ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 142 | 137 141 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑛 ) < 𝑇 ) |
| 143 | 8 | ex | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 → ( abs ‘ 𝐵 ) ≤ 𝑅 ) ) |
| 144 | 81 143 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 → ( abs ‘ 𝐵 ) ≤ 𝑅 ) ) |
| 145 | 142 144 | mpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) |
| 146 | 122 115 123 145 | lediv1dd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 / 𝑛 ) ) |
| 147 | 146 119 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · ( 1 / 𝑛 ) ) ) |
| 148 | 78 82 121 147 | fsumle | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 𝑅 · ( 1 / 𝑛 ) ) ) |
| 149 | 21 | recnd | ⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 150 | 112 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 151 | 78 149 150 | fsummulc2 | ⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 𝑅 · ( 1 / 𝑛 ) ) ) |
| 152 | 148 151 | breqtrrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ) |
| 153 | 104 | nnrecred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 154 | 72 153 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 155 | 154 | recnd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
| 156 | 113 | recnd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
| 157 | 11 | nnrecred | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 158 | 157 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 159 | 51 69 9 158 | fsumsplit | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ) |
| 160 | 155 156 159 | mvrladdd | ⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) |
| 161 | 9 157 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 162 | 161 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 163 | 154 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 164 | 162 163 | resubcld | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 165 | 0red | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ∈ ℝ ) | |
| 166 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
| 167 | fzfid | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∈ Fin ) | |
| 168 | 105 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
| 169 | 168 | rpreccld | ⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 170 | 169 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 171 | 169 | rpge0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 0 ≤ ( 1 / 𝑛 ) ) |
| 172 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 ∈ ℝ+ ) |
| 173 | 172 | rpge0d | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ≤ 𝐴 ) |
| 174 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 < 1 ) | |
| 175 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 176 | 174 175 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 < ( 0 + 1 ) ) |
| 177 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 ∈ ℝ ) |
| 178 | 0z | ⊢ 0 ∈ ℤ | |
| 179 | flbi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < ( 0 + 1 ) ) ) ) | |
| 180 | 177 178 179 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( ⌊ ‘ 𝐴 ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < ( 0 + 1 ) ) ) ) |
| 181 | 173 176 180 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ⌊ ‘ 𝐴 ) = 0 ) |
| 182 | 181 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( 1 ... 0 ) ) |
| 183 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 184 | 182 183 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ∅ ) |
| 185 | 0ss | ⊢ ∅ ⊆ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) | |
| 186 | 184 185 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 187 | 167 170 171 186 | fsumless | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
| 188 | 162 163 | suble0d | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ 0 ↔ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ) |
| 189 | 187 188 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ 0 ) |
| 190 | 22 27 | logge0d | ⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝑇 ) ) |
| 191 | 0le1 | ⊢ 0 ≤ 1 | |
| 192 | 191 | a1i | ⊢ ( 𝜑 → 0 ≤ 1 ) |
| 193 | 30 24 190 192 | addge0d | ⊢ ( 𝜑 → 0 ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 194 | 193 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 195 | 164 165 166 189 194 | letrd | ⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 196 | harmonicubnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) | |
| 197 | 57 196 | sylan | ⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |
| 198 | harmoniclbnd | ⊢ ( ( 𝐴 / 𝑇 ) ∈ ℝ+ → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) | |
| 199 | 44 198 | syl | ⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
| 200 | 199 | adantr | ⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
| 201 | 1 | relogcld | ⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 202 | peano2re | ⊢ ( ( log ‘ 𝐴 ) ∈ ℝ → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) | |
| 203 | 201 202 | syl | ⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 204 | 44 | relogcld | ⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) |
| 205 | le2sub | ⊢ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ∧ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) ∧ ( ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) | |
| 206 | 161 154 203 204 205 | syl22anc | ⊢ ( 𝜑 → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
| 207 | 206 | adantr | ⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
| 208 | 197 200 207 | mp2and | ⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 209 | 201 | recnd | ⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 210 | 24 | recnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 211 | 30 | recnd | ⊢ ( 𝜑 → ( log ‘ 𝑇 ) ∈ ℂ ) |
| 212 | 209 210 211 | pnncand | ⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) = ( 1 + ( log ‘ 𝑇 ) ) ) |
| 213 | 1 29 | relogdivd | ⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) |
| 214 | 213 | oveq2d | ⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( ( log ‘ 𝐴 ) + 1 ) − ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) ) |
| 215 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 216 | addcom | ⊢ ( ( ( log ‘ 𝑇 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( log ‘ 𝑇 ) + 1 ) = ( 1 + ( log ‘ 𝑇 ) ) ) | |
| 217 | 211 215 216 | sylancl | ⊢ ( 𝜑 → ( ( log ‘ 𝑇 ) + 1 ) = ( 1 + ( log ‘ 𝑇 ) ) ) |
| 218 | 212 214 217 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( log ‘ 𝑇 ) + 1 ) ) |
| 219 | 218 | adantr | ⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( log ‘ 𝑇 ) + 1 ) ) |
| 220 | 208 219 | breqtrd | ⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 221 | 195 220 57 24 | ltlecasei | ⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 222 | 160 221 | eqbrtrrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 223 | lemul2a | ⊢ ( ( ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ∧ ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) ∧ Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) | |
| 224 | 113 31 3 222 223 | syl31anc | ⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) |
| 225 | 83 114 32 152 224 | letrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) |
| 226 | 77 83 20 32 110 225 | le2addd | ⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |
| 227 | 71 226 | eqbrtrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |
| 228 | 16 19 33 43 227 | letrd | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |