This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmco | |- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm | |- ( F e. ( T GrpHom U ) -> F e. ( T MndHom U ) ) |
|
| 2 | ghmmhm | |- ( G e. ( S GrpHom T ) -> G e. ( S MndHom T ) ) |
|
| 3 | mhmco | |- ( ( F e. ( T MndHom U ) /\ G e. ( S MndHom T ) ) -> ( F o. G ) e. ( S MndHom U ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S MndHom U ) ) |
| 5 | ghmgrp1 | |- ( G e. ( S GrpHom T ) -> S e. Grp ) |
|
| 6 | ghmgrp2 | |- ( F e. ( T GrpHom U ) -> U e. Grp ) |
|
| 7 | ghmmhmb | |- ( ( S e. Grp /\ U e. Grp ) -> ( S GrpHom U ) = ( S MndHom U ) ) |
|
| 8 | 5 6 7 | syl2anr | |- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( S GrpHom U ) = ( S MndHom U ) ) |
| 9 | 4 8 | eleqtrrd | |- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |