This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 12-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdom1 | |- ( A ~< 1o <-> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 | |- 1o = { (/) } |
|
| 2 | 1 | breq2i | |- ( A ~<_ 1o <-> A ~<_ { (/) } ) |
| 3 | brdomi | |- ( A ~<_ { (/) } -> E. f f : A -1-1-> { (/) } ) |
|
| 4 | f1cdmsn | |- ( ( f : A -1-1-> { (/) } /\ A =/= (/) ) -> E. x A = { x } ) |
|
| 5 | vex | |- x e. _V |
|
| 6 | 5 | ensn1 | |- { x } ~~ 1o |
| 7 | breq1 | |- ( A = { x } -> ( A ~~ 1o <-> { x } ~~ 1o ) ) |
|
| 8 | 6 7 | mpbiri | |- ( A = { x } -> A ~~ 1o ) |
| 9 | 8 | exlimiv | |- ( E. x A = { x } -> A ~~ 1o ) |
| 10 | 4 9 | syl | |- ( ( f : A -1-1-> { (/) } /\ A =/= (/) ) -> A ~~ 1o ) |
| 11 | 10 | expcom | |- ( A =/= (/) -> ( f : A -1-1-> { (/) } -> A ~~ 1o ) ) |
| 12 | 11 | exlimdv | |- ( A =/= (/) -> ( E. f f : A -1-1-> { (/) } -> A ~~ 1o ) ) |
| 13 | 3 12 | syl5 | |- ( A =/= (/) -> ( A ~<_ { (/) } -> A ~~ 1o ) ) |
| 14 | 2 13 | biimtrid | |- ( A =/= (/) -> ( A ~<_ 1o -> A ~~ 1o ) ) |
| 15 | iman | |- ( ( A ~<_ 1o -> A ~~ 1o ) <-> -. ( A ~<_ 1o /\ -. A ~~ 1o ) ) |
|
| 16 | 14 15 | sylib | |- ( A =/= (/) -> -. ( A ~<_ 1o /\ -. A ~~ 1o ) ) |
| 17 | brsdom | |- ( A ~< 1o <-> ( A ~<_ 1o /\ -. A ~~ 1o ) ) |
|
| 18 | 16 17 | sylnibr | |- ( A =/= (/) -> -. A ~< 1o ) |
| 19 | 18 | necon4ai | |- ( A ~< 1o -> A = (/) ) |
| 20 | 1n0 | |- 1o =/= (/) |
|
| 21 | 1oex | |- 1o e. _V |
|
| 22 | 21 | 0sdom | |- ( (/) ~< 1o <-> 1o =/= (/) ) |
| 23 | 20 22 | mpbir | |- (/) ~< 1o |
| 24 | breq1 | |- ( A = (/) -> ( A ~< 1o <-> (/) ~< 1o ) ) |
|
| 25 | 23 24 | mpbiri | |- ( A = (/) -> A ~< 1o ) |
| 26 | 19 25 | impbii | |- ( A ~< 1o <-> A = (/) ) |