This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of Suppes p. 97. (Contributed by NM, 17-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brdom2 | |- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdom2 | |- ~<_ = ( ~< u. ~~ ) |
|
| 2 | 1 | eleq2i | |- ( <. A , B >. e. ~<_ <-> <. A , B >. e. ( ~< u. ~~ ) ) |
| 3 | df-br | |- ( A ~<_ B <-> <. A , B >. e. ~<_ ) |
|
| 4 | df-br | |- ( A ~< B <-> <. A , B >. e. ~< ) |
|
| 5 | df-br | |- ( A ~~ B <-> <. A , B >. e. ~~ ) |
|
| 6 | 4 5 | orbi12i | |- ( ( A ~< B \/ A ~~ B ) <-> ( <. A , B >. e. ~< \/ <. A , B >. e. ~~ ) ) |
| 7 | elun | |- ( <. A , B >. e. ( ~< u. ~~ ) <-> ( <. A , B >. e. ~< \/ <. A , B >. e. ~~ ) ) |
|
| 8 | 6 7 | bitr4i | |- ( ( A ~< B \/ A ~~ B ) <-> <. A , B >. e. ( ~< u. ~~ ) ) |
| 9 | 2 3 8 | 3bitr4i | |- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |