This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015) Avoid ax-un . (Revised by BTernaryTau, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1b | |- ( A ~~ 1o <-> A = { U. A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 | |- ( A ~~ 1o <-> E. x A = { x } ) |
|
| 2 | id | |- ( A = { x } -> A = { x } ) |
|
| 3 | unieq | |- ( A = { x } -> U. A = U. { x } ) |
|
| 4 | unisnv | |- U. { x } = x |
|
| 5 | 3 4 | eqtrdi | |- ( A = { x } -> U. A = x ) |
| 6 | 5 | sneqd | |- ( A = { x } -> { U. A } = { x } ) |
| 7 | 2 6 | eqtr4d | |- ( A = { x } -> A = { U. A } ) |
| 8 | 7 | exlimiv | |- ( E. x A = { x } -> A = { U. A } ) |
| 9 | 1 8 | sylbi | |- ( A ~~ 1o -> A = { U. A } ) |
| 10 | id | |- ( A = { U. A } -> A = { U. A } ) |
|
| 11 | eqsnuniex | |- ( A = { U. A } -> U. A e. _V ) |
|
| 12 | ensn1g | |- ( U. A e. _V -> { U. A } ~~ 1o ) |
|
| 13 | 11 12 | syl | |- ( A = { U. A } -> { U. A } ~~ 1o ) |
| 14 | 10 13 | eqbrtrd | |- ( A = { U. A } -> A ~~ 1o ) |
| 15 | 9 14 | impbii | |- ( A ~~ 1o <-> A = { U. A } ) |