This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frgpnabl.g | |- G = ( freeGrp ` I ) |
|
| Assertion | frgpnabl | |- ( 1o ~< I -> -. G e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpnabl.g | |- G = ( freeGrp ` I ) |
|
| 2 | relsdom | |- Rel ~< |
|
| 3 | 2 | brrelex2i | |- ( 1o ~< I -> I e. _V ) |
| 4 | 1sdom | |- ( I e. _V -> ( 1o ~< I <-> E. a e. I E. b e. I -. a = b ) ) |
|
| 5 | 3 4 | syl | |- ( 1o ~< I -> ( 1o ~< I <-> E. a e. I E. b e. I -. a = b ) ) |
| 6 | 5 | ibi | |- ( 1o ~< I -> E. a e. I E. b e. I -. a = b ) |
| 7 | eqid | |- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
|
| 8 | eqid | |- ( ~FG ` I ) = ( ~FG ` I ) |
|
| 9 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 10 | eqid | |- ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 11 | eqid | |- ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) = ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) |
|
| 12 | eqid | |- ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) = ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) |
|
| 13 | eqid | |- ( varFGrp ` I ) = ( varFGrp ` I ) |
|
| 14 | 3 | ad2antrr | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> I e. _V ) |
| 15 | simplrl | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> a e. I ) |
|
| 16 | simplrr | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> b e. I ) |
|
| 17 | simpr | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> G e. Abel ) |
|
| 18 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 19 | 8 13 1 18 | vrgpf | |- ( I e. _V -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
| 20 | 14 19 | syl | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
| 21 | 20 15 | ffvelcdmd | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( varFGrp ` I ) ` a ) e. ( Base ` G ) ) |
| 22 | 20 16 | ffvelcdmd | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( varFGrp ` I ) ` b ) e. ( Base ` G ) ) |
| 23 | 18 9 | ablcom | |- ( ( G e. Abel /\ ( ( varFGrp ` I ) ` a ) e. ( Base ` G ) /\ ( ( varFGrp ` I ) ` b ) e. ( Base ` G ) ) -> ( ( ( varFGrp ` I ) ` a ) ( +g ` G ) ( ( varFGrp ` I ) ` b ) ) = ( ( ( varFGrp ` I ) ` b ) ( +g ` G ) ( ( varFGrp ` I ) ` a ) ) ) |
| 24 | 17 21 22 23 | syl3anc | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( ( varFGrp ` I ) ` a ) ( +g ` G ) ( ( varFGrp ` I ) ` b ) ) = ( ( ( varFGrp ` I ) ` b ) ( +g ` G ) ( ( varFGrp ` I ) ` a ) ) ) |
| 25 | 1 7 8 9 10 11 12 13 14 15 16 24 | frgpnabllem2 | |- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> a = b ) |
| 26 | 25 | ex | |- ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) -> ( G e. Abel -> a = b ) ) |
| 27 | 26 | con3d | |- ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) -> ( -. a = b -> -. G e. Abel ) ) |
| 28 | 27 | rexlimdvva | |- ( 1o ~< I -> ( E. a e. I E. b e. I -. a = b -> -. G e. Abel ) ) |
| 29 | 6 28 | mpd | |- ( 1o ~< I -> -. G e. Abel ) |