This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | |- B = ( Base ` G ) |
|
| iscyg.2 | |- .x. = ( .g ` G ) |
||
| iscygd.3 | |- ( ph -> G e. Grp ) |
||
| iscygd.4 | |- ( ph -> X e. B ) |
||
| iscygd.5 | |- ( ( ph /\ y e. B ) -> E. n e. ZZ y = ( n .x. X ) ) |
||
| Assertion | iscygd | |- ( ph -> G e. CycGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | |- B = ( Base ` G ) |
|
| 2 | iscyg.2 | |- .x. = ( .g ` G ) |
|
| 3 | iscygd.3 | |- ( ph -> G e. Grp ) |
|
| 4 | iscygd.4 | |- ( ph -> X e. B ) |
|
| 5 | iscygd.5 | |- ( ( ph /\ y e. B ) -> E. n e. ZZ y = ( n .x. X ) ) |
|
| 6 | 5 | ralrimiva | |- ( ph -> A. y e. B E. n e. ZZ y = ( n .x. X ) ) |
| 7 | eqid | |- { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
| 8 | 1 2 7 | iscyggen2 | |- ( G e. Grp -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) |
| 9 | 3 8 | syl | |- ( ph -> ( X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) |
| 10 | 4 6 9 | mpbir2and | |- ( ph -> X e. { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } ) |
| 11 | 10 | ne0d | |- ( ph -> { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) |
| 12 | 1 2 7 | iscyg2 | |- ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) ) |
| 13 | 3 11 12 | sylanbrc | |- ( ph -> G e. CycGrp ) |