This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powers of a group element give a homomorphism from ZZ to a group. The name .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgghm2.m | |- .x. = ( .g ` R ) |
|
| mulgghm2.f | |- F = ( n e. ZZ |-> ( n .x. .1. ) ) |
||
| mulgghm2.b | |- B = ( Base ` R ) |
||
| Assertion | mulgghm2 | |- ( ( R e. Grp /\ .1. e. B ) -> F e. ( ZZring GrpHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgghm2.m | |- .x. = ( .g ` R ) |
|
| 2 | mulgghm2.f | |- F = ( n e. ZZ |-> ( n .x. .1. ) ) |
|
| 3 | mulgghm2.b | |- B = ( Base ` R ) |
|
| 4 | simpl | |- ( ( R e. Grp /\ .1. e. B ) -> R e. Grp ) |
|
| 5 | zringgrp | |- ZZring e. Grp |
|
| 6 | 4 5 | jctil | |- ( ( R e. Grp /\ .1. e. B ) -> ( ZZring e. Grp /\ R e. Grp ) ) |
| 7 | 3 1 | mulgcl | |- ( ( R e. Grp /\ n e. ZZ /\ .1. e. B ) -> ( n .x. .1. ) e. B ) |
| 8 | 7 | 3expa | |- ( ( ( R e. Grp /\ n e. ZZ ) /\ .1. e. B ) -> ( n .x. .1. ) e. B ) |
| 9 | 8 | an32s | |- ( ( ( R e. Grp /\ .1. e. B ) /\ n e. ZZ ) -> ( n .x. .1. ) e. B ) |
| 10 | 9 2 | fmptd | |- ( ( R e. Grp /\ .1. e. B ) -> F : ZZ --> B ) |
| 11 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 12 | 3 1 11 | mulgdir | |- ( ( R e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ .1. e. B ) ) -> ( ( x + y ) .x. .1. ) = ( ( x .x. .1. ) ( +g ` R ) ( y .x. .1. ) ) ) |
| 13 | 12 | 3exp2 | |- ( R e. Grp -> ( x e. ZZ -> ( y e. ZZ -> ( .1. e. B -> ( ( x + y ) .x. .1. ) = ( ( x .x. .1. ) ( +g ` R ) ( y .x. .1. ) ) ) ) ) ) |
| 14 | 13 | imp42 | |- ( ( ( R e. Grp /\ ( x e. ZZ /\ y e. ZZ ) ) /\ .1. e. B ) -> ( ( x + y ) .x. .1. ) = ( ( x .x. .1. ) ( +g ` R ) ( y .x. .1. ) ) ) |
| 15 | 14 | an32s | |- ( ( ( R e. Grp /\ .1. e. B ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x + y ) .x. .1. ) = ( ( x .x. .1. ) ( +g ` R ) ( y .x. .1. ) ) ) |
| 16 | zaddcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) |
|
| 17 | 16 | adantl | |- ( ( ( R e. Grp /\ .1. e. B ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x + y ) e. ZZ ) |
| 18 | oveq1 | |- ( n = ( x + y ) -> ( n .x. .1. ) = ( ( x + y ) .x. .1. ) ) |
|
| 19 | ovex | |- ( ( x + y ) .x. .1. ) e. _V |
|
| 20 | 18 2 19 | fvmpt | |- ( ( x + y ) e. ZZ -> ( F ` ( x + y ) ) = ( ( x + y ) .x. .1. ) ) |
| 21 | 17 20 | syl | |- ( ( ( R e. Grp /\ .1. e. B ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( F ` ( x + y ) ) = ( ( x + y ) .x. .1. ) ) |
| 22 | oveq1 | |- ( n = x -> ( n .x. .1. ) = ( x .x. .1. ) ) |
|
| 23 | ovex | |- ( x .x. .1. ) e. _V |
|
| 24 | 22 2 23 | fvmpt | |- ( x e. ZZ -> ( F ` x ) = ( x .x. .1. ) ) |
| 25 | oveq1 | |- ( n = y -> ( n .x. .1. ) = ( y .x. .1. ) ) |
|
| 26 | ovex | |- ( y .x. .1. ) e. _V |
|
| 27 | 25 2 26 | fvmpt | |- ( y e. ZZ -> ( F ` y ) = ( y .x. .1. ) ) |
| 28 | 24 27 | oveqan12d | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( F ` x ) ( +g ` R ) ( F ` y ) ) = ( ( x .x. .1. ) ( +g ` R ) ( y .x. .1. ) ) ) |
| 29 | 28 | adantl | |- ( ( ( R e. Grp /\ .1. e. B ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( F ` x ) ( +g ` R ) ( F ` y ) ) = ( ( x .x. .1. ) ( +g ` R ) ( y .x. .1. ) ) ) |
| 30 | 15 21 29 | 3eqtr4d | |- ( ( ( R e. Grp /\ .1. e. B ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( F ` ( x + y ) ) = ( ( F ` x ) ( +g ` R ) ( F ` y ) ) ) |
| 31 | 30 | ralrimivva | |- ( ( R e. Grp /\ .1. e. B ) -> A. x e. ZZ A. y e. ZZ ( F ` ( x + y ) ) = ( ( F ` x ) ( +g ` R ) ( F ` y ) ) ) |
| 32 | 10 31 | jca | |- ( ( R e. Grp /\ .1. e. B ) -> ( F : ZZ --> B /\ A. x e. ZZ A. y e. ZZ ( F ` ( x + y ) ) = ( ( F ` x ) ( +g ` R ) ( F ` y ) ) ) ) |
| 33 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 34 | zringplusg | |- + = ( +g ` ZZring ) |
|
| 35 | 33 3 34 11 | isghm | |- ( F e. ( ZZring GrpHom R ) <-> ( ( ZZring e. Grp /\ R e. Grp ) /\ ( F : ZZ --> B /\ A. x e. ZZ A. y e. ZZ ( F ` ( x + y ) ) = ( ( F ` x ) ( +g ` R ) ( F ` y ) ) ) ) ) |
| 36 | 6 32 35 | sylanbrc | |- ( ( R e. Grp /\ .1. e. B ) -> F e. ( ZZring GrpHom R ) ) |