This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup3.g | |- G = ( freeGrp ` I ) |
|
| frgpup3.b | |- B = ( Base ` H ) |
||
| frgpup3.u | |- U = ( varFGrp ` I ) |
||
| Assertion | frgpup3 | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> E! m e. ( G GrpHom H ) ( m o. U ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup3.g | |- G = ( freeGrp ` I ) |
|
| 2 | frgpup3.b | |- B = ( Base ` H ) |
|
| 3 | frgpup3.u | |- U = ( varFGrp ` I ) |
|
| 4 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 5 | eqid | |- ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) |
|
| 6 | simp1 | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> H e. Grp ) |
|
| 7 | simp2 | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> I e. V ) |
|
| 8 | simp3 | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> F : I --> B ) |
|
| 9 | eqid | |- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
|
| 10 | eqid | |- ( ~FG ` I ) = ( ~FG ` I ) |
|
| 11 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 12 | eqid | |- ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) = ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) |
|
| 13 | 2 4 5 6 7 8 9 10 1 11 12 | frgpup1 | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) e. ( G GrpHom H ) ) |
| 14 | 6 | adantr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ k e. I ) -> H e. Grp ) |
| 15 | 7 | adantr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ k e. I ) -> I e. V ) |
| 16 | 8 | adantr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ k e. I ) -> F : I --> B ) |
| 17 | simpr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ k e. I ) -> k e. I ) |
|
| 18 | 2 4 5 14 15 16 9 10 1 11 12 3 17 | frgpup2 | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ k e. I ) -> ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) ` ( U ` k ) ) = ( F ` k ) ) |
| 19 | 18 | mpteq2dva | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> ( k e. I |-> ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) ` ( U ` k ) ) ) = ( k e. I |-> ( F ` k ) ) ) |
| 20 | 11 2 | ghmf | |- ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) e. ( G GrpHom H ) -> ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) : ( Base ` G ) --> B ) |
| 21 | 13 20 | syl | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) : ( Base ` G ) --> B ) |
| 22 | 10 3 1 11 | vrgpf | |- ( I e. V -> U : I --> ( Base ` G ) ) |
| 23 | 7 22 | syl | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> U : I --> ( Base ` G ) ) |
| 24 | fcompt | |- ( ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) : ( Base ` G ) --> B /\ U : I --> ( Base ` G ) ) -> ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) o. U ) = ( k e. I |-> ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) ` ( U ` k ) ) ) ) |
|
| 25 | 21 23 24 | syl2anc | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) o. U ) = ( k e. I |-> ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) ` ( U ` k ) ) ) ) |
| 26 | 8 | feqmptd | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> F = ( k e. I |-> ( F ` k ) ) ) |
| 27 | 19 25 26 | 3eqtr4d | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) o. U ) = F ) |
| 28 | 6 | adantr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ ( m e. ( G GrpHom H ) /\ ( m o. U ) = F ) ) -> H e. Grp ) |
| 29 | 7 | adantr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ ( m e. ( G GrpHom H ) /\ ( m o. U ) = F ) ) -> I e. V ) |
| 30 | 8 | adantr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ ( m e. ( G GrpHom H ) /\ ( m o. U ) = F ) ) -> F : I --> B ) |
| 31 | simprl | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ ( m e. ( G GrpHom H ) /\ ( m o. U ) = F ) ) -> m e. ( G GrpHom H ) ) |
|
| 32 | simprr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ ( m e. ( G GrpHom H ) /\ ( m o. U ) = F ) ) -> ( m o. U ) = F ) |
|
| 33 | 2 4 5 28 29 30 9 10 1 11 12 3 31 32 | frgpup3lem | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ ( m e. ( G GrpHom H ) /\ ( m o. U ) = F ) ) -> m = ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) ) |
| 34 | 33 | expr | |- ( ( ( H e. Grp /\ I e. V /\ F : I --> B ) /\ m e. ( G GrpHom H ) ) -> ( ( m o. U ) = F -> m = ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) ) ) |
| 35 | 34 | ralrimiva | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> A. m e. ( G GrpHom H ) ( ( m o. U ) = F -> m = ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) ) ) |
| 36 | coeq1 | |- ( m = ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) -> ( m o. U ) = ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) o. U ) ) |
|
| 37 | 36 | eqeq1d | |- ( m = ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) -> ( ( m o. U ) = F <-> ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) o. U ) = F ) ) |
| 38 | 37 | eqreu | |- ( ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) e. ( G GrpHom H ) /\ ( ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) o. U ) = F /\ A. m e. ( G GrpHom H ) ( ( m o. U ) = F -> m = ran ( g e. ( _I ` Word ( I X. 2o ) ) |-> <. [ g ] ( ~FG ` I ) , ( H gsum ( ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( ( invg ` H ) ` ( F ` y ) ) ) ) o. g ) ) >. ) ) ) -> E! m e. ( G GrpHom H ) ( m o. U ) = F ) |
| 39 | 13 27 35 38 | syl3anc | |- ( ( H e. Grp /\ I e. V /\ F : I --> B ) -> E! m e. ( G GrpHom H ) ( m o. U ) = F ) |