This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fidomtri2 | |- ( ( A e. V /\ B e. Fin ) -> ( A ~<_ B <-> -. B ~< A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym | |- ( A ~<_ B -> -. B ~< A ) |
|
| 2 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 3 | 2 | con3i | |- ( -. A ~<_ B -> -. A ~< B ) |
| 4 | fidomtri | |- ( ( B e. Fin /\ A e. V ) -> ( B ~<_ A <-> -. A ~< B ) ) |
|
| 5 | 4 | ancoms | |- ( ( A e. V /\ B e. Fin ) -> ( B ~<_ A <-> -. A ~< B ) ) |
| 6 | 3 5 | imbitrrid | |- ( ( A e. V /\ B e. Fin ) -> ( -. A ~<_ B -> B ~<_ A ) ) |
| 7 | ensym | |- ( B ~~ A -> A ~~ B ) |
|
| 8 | endom | |- ( A ~~ B -> A ~<_ B ) |
|
| 9 | 7 8 | syl | |- ( B ~~ A -> A ~<_ B ) |
| 10 | 9 | con3i | |- ( -. A ~<_ B -> -. B ~~ A ) |
| 11 | 6 10 | jca2 | |- ( ( A e. V /\ B e. Fin ) -> ( -. A ~<_ B -> ( B ~<_ A /\ -. B ~~ A ) ) ) |
| 12 | brsdom | |- ( B ~< A <-> ( B ~<_ A /\ -. B ~~ A ) ) |
|
| 13 | 11 12 | imbitrrdi | |- ( ( A e. V /\ B e. Fin ) -> ( -. A ~<_ B -> B ~< A ) ) |
| 14 | 13 | con1d | |- ( ( A e. V /\ B e. Fin ) -> ( -. B ~< A -> A ~<_ B ) ) |
| 15 | 1 14 | impbid2 | |- ( ( A e. V /\ B e. Fin ) -> ( A ~<_ B <-> -. B ~< A ) ) |