This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idghm.b | |- B = ( Base ` G ) |
|
| Assertion | idghm | |- ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idghm.b | |- B = ( Base ` G ) |
|
| 2 | id | |- ( G e. Grp -> G e. Grp ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | 1 3 | grpcl | |- ( ( G e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` G ) b ) e. B ) |
| 5 | 4 | 3expb | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` G ) b ) e. B ) |
| 6 | fvresi | |- ( ( a ( +g ` G ) b ) e. B -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( a ( +g ` G ) b ) ) |
|
| 7 | 5 6 | syl | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( a ( +g ` G ) b ) ) |
| 8 | fvresi | |- ( a e. B -> ( ( _I |` B ) ` a ) = a ) |
|
| 9 | fvresi | |- ( b e. B -> ( ( _I |` B ) ` b ) = b ) |
|
| 10 | 8 9 | oveqan12d | |- ( ( a e. B /\ b e. B ) -> ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` G ) b ) ) |
| 11 | 10 | adantl | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` G ) b ) ) |
| 12 | 7 11 | eqtr4d | |- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) |
| 13 | 12 | ralrimivva | |- ( G e. Grp -> A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) |
| 14 | f1oi | |- ( _I |` B ) : B -1-1-onto-> B |
|
| 15 | f1of | |- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
|
| 16 | 14 15 | ax-mp | |- ( _I |` B ) : B --> B |
| 17 | 13 16 | jctil | |- ( G e. Grp -> ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) ) |
| 18 | 1 1 3 3 | isghm | |- ( ( _I |` B ) e. ( G GrpHom G ) <-> ( ( G e. Grp /\ G e. Grp ) /\ ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` G ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` G ) ( ( _I |` B ) ` b ) ) ) ) ) |
| 19 | 2 2 17 18 | syl21anbrc | |- ( G e. Grp -> ( _I |` B ) e. ( G GrpHom G ) ) |