This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
||
| efgredlem.2 | |- ( ph -> A e. dom S ) |
||
| efgredlem.3 | |- ( ph -> B e. dom S ) |
||
| efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
||
| efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
||
| efgredlemb.k | |- K = ( ( ( # ` A ) - 1 ) - 1 ) |
||
| efgredlemb.l | |- L = ( ( ( # ` B ) - 1 ) - 1 ) |
||
| efgredlemb.p | |- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
||
| efgredlemb.q | |- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
||
| efgredlemb.u | |- ( ph -> U e. ( I X. 2o ) ) |
||
| efgredlemb.v | |- ( ph -> V e. ( I X. 2o ) ) |
||
| efgredlemb.6 | |- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
||
| efgredlemb.7 | |- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
||
| efgredlemb.8 | |- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
||
| Assertion | efgredlemc | |- ( ph -> ( P e. ( ZZ>= ` Q ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
|
| 8 | efgredlem.2 | |- ( ph -> A e. dom S ) |
|
| 9 | efgredlem.3 | |- ( ph -> B e. dom S ) |
|
| 10 | efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
|
| 11 | efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
|
| 12 | efgredlemb.k | |- K = ( ( ( # ` A ) - 1 ) - 1 ) |
|
| 13 | efgredlemb.l | |- L = ( ( ( # ` B ) - 1 ) - 1 ) |
|
| 14 | efgredlemb.p | |- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
|
| 15 | efgredlemb.q | |- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
|
| 16 | efgredlemb.u | |- ( ph -> U e. ( I X. 2o ) ) |
|
| 17 | efgredlemb.v | |- ( ph -> V e. ( I X. 2o ) ) |
|
| 18 | efgredlemb.6 | |- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
|
| 19 | efgredlemb.7 | |- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
|
| 20 | efgredlemb.8 | |- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
|
| 21 | uzp1 | |- ( P e. ( ZZ>= ` Q ) -> ( P = Q \/ P e. ( ZZ>= ` ( Q + 1 ) ) ) ) |
|
| 22 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 23 | 1 22 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 24 | 1 2 3 4 5 6 | efgsdm | |- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
| 25 | 24 | simp1bi | |- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
| 26 | 8 25 | syl | |- ( ph -> A e. ( Word W \ { (/) } ) ) |
| 27 | 26 | eldifad | |- ( ph -> A e. Word W ) |
| 28 | wrdf | |- ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
|
| 29 | 27 28 | syl | |- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
| 30 | fzossfz | |- ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ... ( ( # ` A ) - 1 ) ) |
|
| 31 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema | |- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
| 32 | 31 | simpld | |- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
| 33 | fzo0end | |- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
|
| 34 | 32 33 | syl | |- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 35 | 12 34 | eqeltrid | |- ( ph -> K e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 36 | 30 35 | sselid | |- ( ph -> K e. ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 37 | lencl | |- ( A e. Word W -> ( # ` A ) e. NN0 ) |
|
| 38 | 27 37 | syl | |- ( ph -> ( # ` A ) e. NN0 ) |
| 39 | 38 | nn0zd | |- ( ph -> ( # ` A ) e. ZZ ) |
| 40 | fzoval | |- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
|
| 41 | 39 40 | syl | |- ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 42 | 36 41 | eleqtrrd | |- ( ph -> K e. ( 0 ..^ ( # ` A ) ) ) |
| 43 | 29 42 | ffvelcdmd | |- ( ph -> ( A ` K ) e. W ) |
| 44 | 23 43 | sselid | |- ( ph -> ( A ` K ) e. Word ( I X. 2o ) ) |
| 45 | lencl | |- ( ( A ` K ) e. Word ( I X. 2o ) -> ( # ` ( A ` K ) ) e. NN0 ) |
|
| 46 | 44 45 | syl | |- ( ph -> ( # ` ( A ` K ) ) e. NN0 ) |
| 47 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 48 | 46 47 | eleqtrdi | |- ( ph -> ( # ` ( A ` K ) ) e. ( ZZ>= ` 0 ) ) |
| 49 | eluzfz2 | |- ( ( # ` ( A ` K ) ) e. ( ZZ>= ` 0 ) -> ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
|
| 50 | 48 49 | syl | |- ( ph -> ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
| 51 | ccatpfx | |- ( ( ( A ` K ) e. Word ( I X. 2o ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ ( # ` ( A ` K ) ) e. ( 0 ... ( # ` ( A ` K ) ) ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) ) |
|
| 52 | 44 14 50 51 | syl3anc | |- ( ph -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) ) |
| 53 | pfxid | |- ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) = ( A ` K ) ) |
|
| 54 | 44 53 | syl | |- ( ph -> ( ( A ` K ) prefix ( # ` ( A ` K ) ) ) = ( A ` K ) ) |
| 55 | 52 54 | eqtrd | |- ( ph -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( A ` K ) ) |
| 56 | 1 2 3 4 5 6 | efgsdm | |- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
| 57 | 56 | simp1bi | |- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
| 58 | 9 57 | syl | |- ( ph -> B e. ( Word W \ { (/) } ) ) |
| 59 | 58 | eldifad | |- ( ph -> B e. Word W ) |
| 60 | wrdf | |- ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
|
| 61 | 59 60 | syl | |- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
| 62 | fzossfz | |- ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ... ( ( # ` B ) - 1 ) ) |
|
| 63 | 31 | simprd | |- ( ph -> ( ( # ` B ) - 1 ) e. NN ) |
| 64 | fzo0end | |- ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
|
| 65 | 63 64 | syl | |- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 66 | 13 65 | eqeltrid | |- ( ph -> L e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 67 | 62 66 | sselid | |- ( ph -> L e. ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 68 | lencl | |- ( B e. Word W -> ( # ` B ) e. NN0 ) |
|
| 69 | 59 68 | syl | |- ( ph -> ( # ` B ) e. NN0 ) |
| 70 | 69 | nn0zd | |- ( ph -> ( # ` B ) e. ZZ ) |
| 71 | fzoval | |- ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
|
| 72 | 70 71 | syl | |- ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 73 | 67 72 | eleqtrrd | |- ( ph -> L e. ( 0 ..^ ( # ` B ) ) ) |
| 74 | 61 73 | ffvelcdmd | |- ( ph -> ( B ` L ) e. W ) |
| 75 | 23 74 | sselid | |- ( ph -> ( B ` L ) e. Word ( I X. 2o ) ) |
| 76 | lencl | |- ( ( B ` L ) e. Word ( I X. 2o ) -> ( # ` ( B ` L ) ) e. NN0 ) |
|
| 77 | 75 76 | syl | |- ( ph -> ( # ` ( B ` L ) ) e. NN0 ) |
| 78 | 77 47 | eleqtrdi | |- ( ph -> ( # ` ( B ` L ) ) e. ( ZZ>= ` 0 ) ) |
| 79 | eluzfz2 | |- ( ( # ` ( B ` L ) ) e. ( ZZ>= ` 0 ) -> ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
|
| 80 | 78 79 | syl | |- ( ph -> ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
| 81 | ccatpfx | |- ( ( ( B ` L ) e. Word ( I X. 2o ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ ( # ` ( B ` L ) ) e. ( 0 ... ( # ` ( B ` L ) ) ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) ) |
|
| 82 | 75 15 80 81 | syl3anc | |- ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) ) |
| 83 | pfxid | |- ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) = ( B ` L ) ) |
|
| 84 | 75 83 | syl | |- ( ph -> ( ( B ` L ) prefix ( # ` ( B ` L ) ) ) = ( B ` L ) ) |
| 85 | 82 84 | eqtrd | |- ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( B ` L ) ) |
| 86 | 55 85 | eqeq12d | |- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( A ` K ) = ( B ` L ) ) ) |
| 87 | 20 86 | mtbird | |- ( ph -> -. ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 88 | 1 2 3 4 | efgtval | |- ( ( ( A ` K ) e. W /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ U e. ( I X. 2o ) ) -> ( P ( T ` ( A ` K ) ) U ) = ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) ) |
| 89 | 43 14 16 88 | syl3anc | |- ( ph -> ( P ( T ` ( A ` K ) ) U ) = ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) ) |
| 90 | 3 | efgmf | |- M : ( I X. 2o ) --> ( I X. 2o ) |
| 91 | 90 | ffvelcdmi | |- ( U e. ( I X. 2o ) -> ( M ` U ) e. ( I X. 2o ) ) |
| 92 | 16 91 | syl | |- ( ph -> ( M ` U ) e. ( I X. 2o ) ) |
| 93 | 16 92 | s2cld | |- ( ph -> <" U ( M ` U ) "> e. Word ( I X. 2o ) ) |
| 94 | splval | |- ( ( ( A ` K ) e. W /\ ( P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) ) -> ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
|
| 95 | 43 14 14 93 94 | syl13anc | |- ( ph -> ( ( A ` K ) splice <. P , P , <" U ( M ` U ) "> >. ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 96 | 18 89 95 | 3eqtrd | |- ( ph -> ( S ` A ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 97 | 1 2 3 4 | efgtval | |- ( ( ( B ` L ) e. W /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ V e. ( I X. 2o ) ) -> ( Q ( T ` ( B ` L ) ) V ) = ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) ) |
| 98 | 74 15 17 97 | syl3anc | |- ( ph -> ( Q ( T ` ( B ` L ) ) V ) = ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) ) |
| 99 | 90 | ffvelcdmi | |- ( V e. ( I X. 2o ) -> ( M ` V ) e. ( I X. 2o ) ) |
| 100 | 17 99 | syl | |- ( ph -> ( M ` V ) e. ( I X. 2o ) ) |
| 101 | 17 100 | s2cld | |- ( ph -> <" V ( M ` V ) "> e. Word ( I X. 2o ) ) |
| 102 | splval | |- ( ( ( B ` L ) e. W /\ ( Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) ) -> ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
|
| 103 | 74 15 15 101 102 | syl13anc | |- ( ph -> ( ( B ` L ) splice <. Q , Q , <" V ( M ` V ) "> >. ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 104 | 19 98 103 | 3eqtrd | |- ( ph -> ( S ` B ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 105 | 10 96 104 | 3eqtr3d | |- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 106 | 105 | adantr | |- ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 107 | pfxcl | |- ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) |
|
| 108 | 44 107 | syl | |- ( ph -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) |
| 109 | 108 | adantr | |- ( ( ph /\ P = Q ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) |
| 110 | 93 | adantr | |- ( ( ph /\ P = Q ) -> <" U ( M ` U ) "> e. Word ( I X. 2o ) ) |
| 111 | ccatcl | |- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) ) |
|
| 112 | 109 110 111 | syl2anc | |- ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) ) |
| 113 | swrdcl | |- ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
|
| 114 | 44 113 | syl | |- ( ph -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 115 | 114 | adantr | |- ( ( ph /\ P = Q ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 116 | pfxcl | |- ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) |
|
| 117 | 75 116 | syl | |- ( ph -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) |
| 118 | 117 | adantr | |- ( ( ph /\ P = Q ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) |
| 119 | 101 | adantr | |- ( ( ph /\ P = Q ) -> <" V ( M ` V ) "> e. Word ( I X. 2o ) ) |
| 120 | ccatcl | |- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) ) |
|
| 121 | 118 119 120 | syl2anc | |- ( ( ph /\ P = Q ) -> ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) ) |
| 122 | swrdcl | |- ( ( B ` L ) e. Word ( I X. 2o ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) |
|
| 123 | 75 122 | syl | |- ( ph -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) |
| 124 | 123 | adantr | |- ( ( ph /\ P = Q ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) |
| 125 | pfxlen | |- ( ( ( A ` K ) e. Word ( I X. 2o ) /\ P e. ( 0 ... ( # ` ( A ` K ) ) ) ) -> ( # ` ( ( A ` K ) prefix P ) ) = P ) |
|
| 126 | 44 14 125 | syl2anc | |- ( ph -> ( # ` ( ( A ` K ) prefix P ) ) = P ) |
| 127 | pfxlen | |- ( ( ( B ` L ) e. Word ( I X. 2o ) /\ Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) -> ( # ` ( ( B ` L ) prefix Q ) ) = Q ) |
|
| 128 | 75 15 127 | syl2anc | |- ( ph -> ( # ` ( ( B ` L ) prefix Q ) ) = Q ) |
| 129 | 126 128 | eqeq12d | |- ( ph -> ( ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) <-> P = Q ) ) |
| 130 | 129 | biimpar | |- ( ( ph /\ P = Q ) -> ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) ) |
| 131 | s2len | |- ( # ` <" U ( M ` U ) "> ) = 2 |
|
| 132 | s2len | |- ( # ` <" V ( M ` V ) "> ) = 2 |
|
| 133 | 131 132 | eqtr4i | |- ( # ` <" U ( M ` U ) "> ) = ( # ` <" V ( M ` V ) "> ) |
| 134 | 133 | a1i | |- ( ( ph /\ P = Q ) -> ( # ` <" U ( M ` U ) "> ) = ( # ` <" V ( M ` V ) "> ) ) |
| 135 | 130 134 | oveq12d | |- ( ( ph /\ P = Q ) -> ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) |
| 136 | ccatlen | |- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) ) |
|
| 137 | 109 110 136 | syl2anc | |- ( ( ph /\ P = Q ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U ( M ` U ) "> ) ) ) |
| 138 | ccatlen | |- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) |
|
| 139 | 118 119 138 | syl2anc | |- ( ( ph /\ P = Q ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V ( M ` V ) "> ) ) ) |
| 140 | 135 137 139 | 3eqtr4d | |- ( ( ph /\ P = Q ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) ) |
| 141 | ccatopth | |- ( ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) /\ ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) e. Word ( I X. 2o ) /\ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) /\ ( # ` ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) |
|
| 142 | 112 115 121 124 140 141 | syl221anc | |- ( ( ph /\ P = Q ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) |
| 143 | 106 142 | mpbid | |- ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 144 | 143 | simpld | |- ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) |
| 145 | ccatopth | |- ( ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U ( M ` U ) "> e. Word ( I X. 2o ) ) /\ ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V ( M ` V ) "> e. Word ( I X. 2o ) ) /\ ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( B ` L ) prefix Q ) ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) ) |
|
| 146 | 109 110 118 119 130 145 | syl221anc | |- ( ( ph /\ P = Q ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) ) |
| 147 | 144 146 | mpbid | |- ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) /\ <" U ( M ` U ) "> = <" V ( M ` V ) "> ) ) |
| 148 | 147 | simpld | |- ( ( ph /\ P = Q ) -> ( ( A ` K ) prefix P ) = ( ( B ` L ) prefix Q ) ) |
| 149 | 143 | simprd | |- ( ( ph /\ P = Q ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) |
| 150 | 148 149 | oveq12d | |- ( ( ph /\ P = Q ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 151 | 87 150 | mtand | |- ( ph -> -. P = Q ) |
| 152 | 151 | pm2.21d | |- ( ph -> ( P = Q -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 153 | uzp1 | |- ( P e. ( ZZ>= ` ( Q + 1 ) ) -> ( P = ( Q + 1 ) \/ P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) ) ) |
|
| 154 | 16 | s1cld | |- ( ph -> <" U "> e. Word ( I X. 2o ) ) |
| 155 | ccatcl | |- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) |
|
| 156 | 108 154 155 | syl2anc | |- ( ph -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) |
| 157 | 92 | s1cld | |- ( ph -> <" ( M ` U ) "> e. Word ( I X. 2o ) ) |
| 158 | ccatass | |- ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) /\ <" ( M ` U ) "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) |
|
| 159 | 156 157 114 158 | syl3anc | |- ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) |
| 160 | ccatass | |- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) /\ <" ( M ` U ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) ) |
|
| 161 | 108 154 157 160 | syl3anc | |- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) ) |
| 162 | df-s2 | |- <" U ( M ` U ) "> = ( <" U "> ++ <" ( M ` U ) "> ) |
|
| 163 | 162 | oveq2i | |- ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ ( <" U "> ++ <" ( M ` U ) "> ) ) |
| 164 | 161 163 | eqtr4di | |- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) = ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ) |
| 165 | 164 | oveq1d | |- ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( A ` K ) prefix P ) ++ <" U ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 166 | 17 | s1cld | |- ( ph -> <" V "> e. Word ( I X. 2o ) ) |
| 167 | 100 | s1cld | |- ( ph -> <" ( M ` V ) "> e. Word ( I X. 2o ) ) |
| 168 | ccatass | |- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) ) |
|
| 169 | 117 166 167 168 | syl3anc | |- ( ph -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) ) |
| 170 | df-s2 | |- <" V ( M ` V ) "> = ( <" V "> ++ <" ( M ` V ) "> ) |
|
| 171 | 170 | oveq2i | |- ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ <" ( M ` V ) "> ) ) |
| 172 | 169 171 | eqtr4di | |- ( ph -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) = ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ) |
| 173 | 172 | oveq1d | |- ( ph -> ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 174 | 105 165 173 | 3eqtr4d | |- ( ph -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ <" ( M ` U ) "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 175 | 159 174 | eqtr3d | |- ( ph -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 176 | 175 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 177 | 156 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) ) |
| 178 | 157 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` U ) "> e. Word ( I X. 2o ) ) |
| 179 | 114 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 180 | ccatcl | |- ( ( <" ( M ` U ) "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) |
|
| 181 | 178 179 180 | syl2anc | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) |
| 182 | ccatcl | |- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) |
|
| 183 | 117 166 182 | syl2anc | |- ( ph -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) |
| 184 | 183 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) ) |
| 185 | 167 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` V ) "> e. Word ( I X. 2o ) ) |
| 186 | ccatcl | |- ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) ) |
|
| 187 | 184 185 186 | syl2anc | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) ) |
| 188 | 123 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) |
| 189 | ccatlen | |- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) ) |
|
| 190 | 117 166 189 | syl2anc | |- ( ph -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) ) |
| 191 | s1len | |- ( # ` <" V "> ) = 1 |
|
| 192 | 191 | a1i | |- ( ph -> ( # ` <" V "> ) = 1 ) |
| 193 | 128 192 | oveq12d | |- ( ph -> ( ( # ` ( ( B ` L ) prefix Q ) ) + ( # ` <" V "> ) ) = ( Q + 1 ) ) |
| 194 | 190 193 | eqtrd | |- ( ph -> ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) = ( Q + 1 ) ) |
| 195 | 126 194 | eqeq12d | |- ( ph -> ( ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) <-> P = ( Q + 1 ) ) ) |
| 196 | 195 | biimpar | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) ) |
| 197 | s1len | |- ( # ` <" U "> ) = 1 |
|
| 198 | s1len | |- ( # ` <" ( M ` V ) "> ) = 1 |
|
| 199 | 197 198 | eqtr4i | |- ( # ` <" U "> ) = ( # ` <" ( M ` V ) "> ) |
| 200 | 199 | a1i | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` <" U "> ) = ( # ` <" ( M ` V ) "> ) ) |
| 201 | 196 200 | oveq12d | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) |
| 202 | 108 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) ) |
| 203 | 154 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> <" U "> e. Word ( I X. 2o ) ) |
| 204 | ccatlen | |- ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) ) |
|
| 205 | 202 203 204 | syl2anc | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( ( # ` ( ( A ` K ) prefix P ) ) + ( # ` <" U "> ) ) ) |
| 206 | ccatlen | |- ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) -> ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) |
|
| 207 | 184 185 206 | syl2anc | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) = ( ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) + ( # ` <" ( M ` V ) "> ) ) ) |
| 208 | 201 205 207 | 3eqtr4d | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) ) |
| 209 | ccatopth | |- ( ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) e. Word ( I X. 2o ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) /\ ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) e. Word ( I X. 2o ) /\ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) e. Word ( I X. 2o ) ) /\ ( # ` ( ( ( A ` K ) prefix P ) ++ <" U "> ) ) = ( # ` ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) |
|
| 210 | 177 181 187 188 208 209 | syl221anc | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) ++ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) <-> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) ) |
| 211 | 176 210 | mpbid | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) /\ ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 212 | 211 | simpld | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) ) |
| 213 | ccatopth | |- ( ( ( ( ( A ` K ) prefix P ) e. Word ( I X. 2o ) /\ <" U "> e. Word ( I X. 2o ) ) /\ ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) e. Word ( I X. 2o ) /\ <" ( M ` V ) "> e. Word ( I X. 2o ) ) /\ ( # ` ( ( A ` K ) prefix P ) ) = ( # ` ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) ) |
|
| 214 | 202 203 184 185 196 213 | syl221anc | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( A ` K ) prefix P ) ++ <" U "> ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ <" ( M ` V ) "> ) <-> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) ) |
| 215 | 212 214 | mpbid | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) /\ <" U "> = <" ( M ` V ) "> ) ) |
| 216 | 215 | simpld | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( A ` K ) prefix P ) = ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ) |
| 217 | 216 | oveq1d | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 218 | 117 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) ) |
| 219 | 166 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> <" V "> e. Word ( I X. 2o ) ) |
| 220 | ccatass | |- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ <" V "> e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) |
|
| 221 | 218 219 179 220 | syl3anc | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( ( B ` L ) prefix Q ) ++ <" V "> ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) ) |
| 222 | 215 | simprd | |- ( ( ph /\ P = ( Q + 1 ) ) -> <" U "> = <" ( M ` V ) "> ) |
| 223 | s111 | |- ( ( U e. ( I X. 2o ) /\ ( M ` V ) e. ( I X. 2o ) ) -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) |
|
| 224 | 16 100 223 | syl2anc | |- ( ph -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) |
| 225 | 224 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" U "> = <" ( M ` V ) "> <-> U = ( M ` V ) ) ) |
| 226 | 222 225 | mpbid | |- ( ( ph /\ P = ( Q + 1 ) ) -> U = ( M ` V ) ) |
| 227 | 226 | fveq2d | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` U ) = ( M ` ( M ` V ) ) ) |
| 228 | 3 | efgmnvl | |- ( V e. ( I X. 2o ) -> ( M ` ( M ` V ) ) = V ) |
| 229 | 17 228 | syl | |- ( ph -> ( M ` ( M ` V ) ) = V ) |
| 230 | 229 | adantr | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` ( M ` V ) ) = V ) |
| 231 | 227 230 | eqtrd | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( M ` U ) = V ) |
| 232 | 231 | s1eqd | |- ( ( ph /\ P = ( Q + 1 ) ) -> <" ( M ` U ) "> = <" V "> ) |
| 233 | 232 | oveq1d | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) |
| 234 | 211 | simprd | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" ( M ` U ) "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) |
| 235 | 233 234 | eqtr3d | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) |
| 236 | 235 | oveq2d | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( <" V "> ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 237 | 217 221 236 | 3eqtrd | |- ( ( ph /\ P = ( Q + 1 ) ) -> ( ( ( A ` K ) prefix P ) ++ ( ( A ` K ) substr <. P , ( # ` ( A ` K ) ) >. ) ) = ( ( ( B ` L ) prefix Q ) ++ ( ( B ` L ) substr <. Q , ( # ` ( B ` L ) ) >. ) ) ) |
| 238 | 87 237 | mtand | |- ( ph -> -. P = ( Q + 1 ) ) |
| 239 | 238 | pm2.21d | |- ( ph -> ( P = ( Q + 1 ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 240 | 15 | elfzelzd | |- ( ph -> Q e. ZZ ) |
| 241 | 240 | zcnd | |- ( ph -> Q e. CC ) |
| 242 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 243 | 241 242 242 | addassd | |- ( ph -> ( ( Q + 1 ) + 1 ) = ( Q + ( 1 + 1 ) ) ) |
| 244 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 245 | 244 | oveq2i | |- ( Q + 2 ) = ( Q + ( 1 + 1 ) ) |
| 246 | 243 245 | eqtr4di | |- ( ph -> ( ( Q + 1 ) + 1 ) = ( Q + 2 ) ) |
| 247 | 246 | fveq2d | |- ( ph -> ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) = ( ZZ>= ` ( Q + 2 ) ) ) |
| 248 | 247 | eleq2d | |- ( ph -> ( P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) <-> P e. ( ZZ>= ` ( Q + 2 ) ) ) ) |
| 249 | 1 2 3 4 5 6 | efgsfo | |- S : dom S -onto-> W |
| 250 | swrdcl | |- ( ( A ` K ) e. Word ( I X. 2o ) -> ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
|
| 251 | 44 250 | syl | |- ( ph -> ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) |
| 252 | ccatcl | |- ( ( ( ( B ` L ) prefix Q ) e. Word ( I X. 2o ) /\ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) e. Word ( I X. 2o ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) |
|
| 253 | 117 251 252 | syl2anc | |- ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. Word ( I X. 2o ) ) |
| 254 | 1 | efgrcl | |- ( ( A ` K ) e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 255 | 43 254 | syl | |- ( ph -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 256 | 255 | simprd | |- ( ph -> W = Word ( I X. 2o ) ) |
| 257 | 253 256 | eleqtrrd | |- ( ph -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. W ) |
| 258 | foelrn | |- ( ( S : dom S -onto-> W /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) e. W ) -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) |
|
| 259 | 249 257 258 | sylancr | |- ( ph -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) |
| 260 | 259 | adantr | |- ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) -> E. c e. dom S ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) |
| 261 | 7 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 262 | 8 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> A e. dom S ) |
| 263 | 9 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> B e. dom S ) |
| 264 | 10 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` A ) = ( S ` B ) ) |
| 265 | 11 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> -. ( A ` 0 ) = ( B ` 0 ) ) |
| 266 | 14 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
| 267 | 15 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
| 268 | 16 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> U e. ( I X. 2o ) ) |
| 269 | 17 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> V e. ( I X. 2o ) ) |
| 270 | 18 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
| 271 | 19 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
| 272 | 20 | ad2antrr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> -. ( A ` K ) = ( B ` L ) ) |
| 273 | simplr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> P e. ( ZZ>= ` ( Q + 2 ) ) ) |
|
| 274 | simprl | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> c e. dom S ) |
|
| 275 | simprr | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) |
|
| 276 | 275 | eqcomd | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( S ` c ) = ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) ) |
| 277 | 1 2 3 4 5 6 261 262 263 264 265 12 13 266 267 268 269 270 271 272 273 274 276 | efgredlemd | |- ( ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) /\ ( c e. dom S /\ ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) = ( S ` c ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 278 | 260 277 | rexlimddv | |- ( ( ph /\ P e. ( ZZ>= ` ( Q + 2 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 279 | 278 | ex | |- ( ph -> ( P e. ( ZZ>= ` ( Q + 2 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 280 | 248 279 | sylbid | |- ( ph -> ( P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 281 | 239 280 | jaod | |- ( ph -> ( ( P = ( Q + 1 ) \/ P e. ( ZZ>= ` ( ( Q + 1 ) + 1 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 282 | 153 281 | syl5 | |- ( ph -> ( P e. ( ZZ>= ` ( Q + 1 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 283 | 152 282 | jaod | |- ( ph -> ( ( P = Q \/ P e. ( ZZ>= ` ( Q + 1 ) ) ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 284 | 21 283 | syl5 | |- ( ph -> ( P e. ( ZZ>= ` Q ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |