This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
||
| efgredlem.2 | |- ( ph -> A e. dom S ) |
||
| efgredlem.3 | |- ( ph -> B e. dom S ) |
||
| efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
||
| efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
||
| efgredlemb.k | |- K = ( ( ( # ` A ) - 1 ) - 1 ) |
||
| efgredlemb.l | |- L = ( ( ( # ` B ) - 1 ) - 1 ) |
||
| efgredlemb.p | |- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
||
| efgredlemb.q | |- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
||
| efgredlemb.u | |- ( ph -> U e. ( I X. 2o ) ) |
||
| efgredlemb.v | |- ( ph -> V e. ( I X. 2o ) ) |
||
| efgredlemb.6 | |- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
||
| efgredlemb.7 | |- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
||
| efgredlemb.8 | |- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
||
| Assertion | efgredlemb | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
|
| 8 | efgredlem.2 | |- ( ph -> A e. dom S ) |
|
| 9 | efgredlem.3 | |- ( ph -> B e. dom S ) |
|
| 10 | efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
|
| 11 | efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
|
| 12 | efgredlemb.k | |- K = ( ( ( # ` A ) - 1 ) - 1 ) |
|
| 13 | efgredlemb.l | |- L = ( ( ( # ` B ) - 1 ) - 1 ) |
|
| 14 | efgredlemb.p | |- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
|
| 15 | efgredlemb.q | |- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
|
| 16 | efgredlemb.u | |- ( ph -> U e. ( I X. 2o ) ) |
|
| 17 | efgredlemb.v | |- ( ph -> V e. ( I X. 2o ) ) |
|
| 18 | efgredlemb.6 | |- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
|
| 19 | efgredlemb.7 | |- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
|
| 20 | efgredlemb.8 | |- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
|
| 21 | fveq2 | |- ( ( S ` A ) = ( S ` B ) -> ( # ` ( S ` A ) ) = ( # ` ( S ` B ) ) ) |
|
| 22 | 21 | breq2d | |- ( ( S ` A ) = ( S ` B ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) ) ) |
| 23 | 22 | imbi1d | |- ( ( S ` A ) = ( S ` B ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 24 | 23 | 2ralbidv | |- ( ( S ` A ) = ( S ` B ) -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 25 | 10 24 | syl | |- ( ph -> ( A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 26 | 7 25 | mpbid | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` B ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
| 27 | 10 | eqcomd | |- ( ph -> ( S ` B ) = ( S ` A ) ) |
| 28 | eqcom | |- ( ( A ` 0 ) = ( B ` 0 ) <-> ( B ` 0 ) = ( A ` 0 ) ) |
|
| 29 | 11 28 | sylnib | |- ( ph -> -. ( B ` 0 ) = ( A ` 0 ) ) |
| 30 | eqcom | |- ( ( A ` K ) = ( B ` L ) <-> ( B ` L ) = ( A ` K ) ) |
|
| 31 | 20 30 | sylnib | |- ( ph -> -. ( B ` L ) = ( A ` K ) ) |
| 32 | 1 2 3 4 5 6 26 9 8 27 29 13 12 15 14 17 16 19 18 31 | efgredlemc | |- ( ph -> ( Q e. ( ZZ>= ` P ) -> ( B ` 0 ) = ( A ` 0 ) ) ) |
| 33 | 32 28 | imbitrrdi | |- ( ph -> ( Q e. ( ZZ>= ` P ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | efgredlemc | |- ( ph -> ( P e. ( ZZ>= ` Q ) -> ( A ` 0 ) = ( B ` 0 ) ) ) |
| 35 | 14 | elfzelzd | |- ( ph -> P e. ZZ ) |
| 36 | 15 | elfzelzd | |- ( ph -> Q e. ZZ ) |
| 37 | uztric | |- ( ( P e. ZZ /\ Q e. ZZ ) -> ( Q e. ( ZZ>= ` P ) \/ P e. ( ZZ>= ` Q ) ) ) |
|
| 38 | 35 36 37 | syl2anc | |- ( ph -> ( Q e. ( ZZ>= ` P ) \/ P e. ( ZZ>= ` Q ) ) ) |
| 39 | 33 34 38 | mpjaod | |- ( ph -> ( A ` 0 ) = ( B ` 0 ) ) |
| 40 | 39 11 | pm2.65i | |- -. ph |