This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgmval.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| Assertion | efgmnvl | |- ( A e. ( I X. 2o ) -> ( M ` ( M ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgmval.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 2 | elxp2 | |- ( A e. ( I X. 2o ) <-> E. a e. I E. b e. 2o A = <. a , b >. ) |
|
| 3 | 1 | efgmval | |- ( ( a e. I /\ b e. 2o ) -> ( a M b ) = <. a , ( 1o \ b ) >. ) |
| 4 | 3 | fveq2d | |- ( ( a e. I /\ b e. 2o ) -> ( M ` ( a M b ) ) = ( M ` <. a , ( 1o \ b ) >. ) ) |
| 5 | df-ov | |- ( a M ( 1o \ b ) ) = ( M ` <. a , ( 1o \ b ) >. ) |
|
| 6 | 4 5 | eqtr4di | |- ( ( a e. I /\ b e. 2o ) -> ( M ` ( a M b ) ) = ( a M ( 1o \ b ) ) ) |
| 7 | 2oconcl | |- ( b e. 2o -> ( 1o \ b ) e. 2o ) |
|
| 8 | 1 | efgmval | |- ( ( a e. I /\ ( 1o \ b ) e. 2o ) -> ( a M ( 1o \ b ) ) = <. a , ( 1o \ ( 1o \ b ) ) >. ) |
| 9 | 7 8 | sylan2 | |- ( ( a e. I /\ b e. 2o ) -> ( a M ( 1o \ b ) ) = <. a , ( 1o \ ( 1o \ b ) ) >. ) |
| 10 | 1on | |- 1o e. On |
|
| 11 | 10 | onordi | |- Ord 1o |
| 12 | ordtr | |- ( Ord 1o -> Tr 1o ) |
|
| 13 | trsucss | |- ( Tr 1o -> ( b e. suc 1o -> b C_ 1o ) ) |
|
| 14 | 11 12 13 | mp2b | |- ( b e. suc 1o -> b C_ 1o ) |
| 15 | df-2o | |- 2o = suc 1o |
|
| 16 | 14 15 | eleq2s | |- ( b e. 2o -> b C_ 1o ) |
| 17 | 16 | adantl | |- ( ( a e. I /\ b e. 2o ) -> b C_ 1o ) |
| 18 | dfss4 | |- ( b C_ 1o <-> ( 1o \ ( 1o \ b ) ) = b ) |
|
| 19 | 17 18 | sylib | |- ( ( a e. I /\ b e. 2o ) -> ( 1o \ ( 1o \ b ) ) = b ) |
| 20 | 19 | opeq2d | |- ( ( a e. I /\ b e. 2o ) -> <. a , ( 1o \ ( 1o \ b ) ) >. = <. a , b >. ) |
| 21 | 6 9 20 | 3eqtrd | |- ( ( a e. I /\ b e. 2o ) -> ( M ` ( a M b ) ) = <. a , b >. ) |
| 22 | fveq2 | |- ( A = <. a , b >. -> ( M ` A ) = ( M ` <. a , b >. ) ) |
|
| 23 | df-ov | |- ( a M b ) = ( M ` <. a , b >. ) |
|
| 24 | 22 23 | eqtr4di | |- ( A = <. a , b >. -> ( M ` A ) = ( a M b ) ) |
| 25 | 24 | fveq2d | |- ( A = <. a , b >. -> ( M ` ( M ` A ) ) = ( M ` ( a M b ) ) ) |
| 26 | id | |- ( A = <. a , b >. -> A = <. a , b >. ) |
|
| 27 | 25 26 | eqeq12d | |- ( A = <. a , b >. -> ( ( M ` ( M ` A ) ) = A <-> ( M ` ( a M b ) ) = <. a , b >. ) ) |
| 28 | 21 27 | syl5ibrcom | |- ( ( a e. I /\ b e. 2o ) -> ( A = <. a , b >. -> ( M ` ( M ` A ) ) = A ) ) |
| 29 | 28 | rexlimivv | |- ( E. a e. I E. b e. 2o A = <. a , b >. -> ( M ` ( M ` A ) ) = A ) |
| 30 | 2 29 | sylbi | |- ( A e. ( I X. 2o ) -> ( M ` ( M ` A ) ) = A ) |