This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
||
| efgredlem.2 | |- ( ph -> A e. dom S ) |
||
| efgredlem.3 | |- ( ph -> B e. dom S ) |
||
| efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
||
| efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
||
| efgredlemb.k | |- K = ( ( ( # ` A ) - 1 ) - 1 ) |
||
| efgredlemb.l | |- L = ( ( ( # ` B ) - 1 ) - 1 ) |
||
| efgredlemb.p | |- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
||
| efgredlemb.q | |- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
||
| efgredlemb.u | |- ( ph -> U e. ( I X. 2o ) ) |
||
| efgredlemb.v | |- ( ph -> V e. ( I X. 2o ) ) |
||
| efgredlemb.6 | |- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
||
| efgredlemb.7 | |- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
||
| efgredlemb.8 | |- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
||
| efgredlemd.9 | |- ( ph -> P e. ( ZZ>= ` ( Q + 2 ) ) ) |
||
| efgredlemd.c | |- ( ph -> C e. dom S ) |
||
| efgredlemd.sc | |- ( ph -> ( S ` C ) = ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) ) |
||
| Assertion | efgredlemd | |- ( ph -> ( A ` 0 ) = ( B ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
|
| 8 | efgredlem.2 | |- ( ph -> A e. dom S ) |
|
| 9 | efgredlem.3 | |- ( ph -> B e. dom S ) |
|
| 10 | efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
|
| 11 | efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
|
| 12 | efgredlemb.k | |- K = ( ( ( # ` A ) - 1 ) - 1 ) |
|
| 13 | efgredlemb.l | |- L = ( ( ( # ` B ) - 1 ) - 1 ) |
|
| 14 | efgredlemb.p | |- ( ph -> P e. ( 0 ... ( # ` ( A ` K ) ) ) ) |
|
| 15 | efgredlemb.q | |- ( ph -> Q e. ( 0 ... ( # ` ( B ` L ) ) ) ) |
|
| 16 | efgredlemb.u | |- ( ph -> U e. ( I X. 2o ) ) |
|
| 17 | efgredlemb.v | |- ( ph -> V e. ( I X. 2o ) ) |
|
| 18 | efgredlemb.6 | |- ( ph -> ( S ` A ) = ( P ( T ` ( A ` K ) ) U ) ) |
|
| 19 | efgredlemb.7 | |- ( ph -> ( S ` B ) = ( Q ( T ` ( B ` L ) ) V ) ) |
|
| 20 | efgredlemb.8 | |- ( ph -> -. ( A ` K ) = ( B ` L ) ) |
|
| 21 | efgredlemd.9 | |- ( ph -> P e. ( ZZ>= ` ( Q + 2 ) ) ) |
|
| 22 | efgredlemd.c | |- ( ph -> C e. dom S ) |
|
| 23 | efgredlemd.sc | |- ( ph -> ( S ` C ) = ( ( ( B ` L ) prefix Q ) ++ ( ( A ` K ) substr <. ( Q + 2 ) , ( # ` ( A ` K ) ) >. ) ) ) |
|
| 24 | 1 2 3 4 5 6 | efgsdm | |- ( C e. dom S <-> ( C e. ( Word W \ { (/) } ) /\ ( C ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` C ) ) ( C ` i ) e. ran ( T ` ( C ` ( i - 1 ) ) ) ) ) |
| 25 | 24 | simp1bi | |- ( C e. dom S -> C e. ( Word W \ { (/) } ) ) |
| 26 | 22 25 | syl | |- ( ph -> C e. ( Word W \ { (/) } ) ) |
| 27 | 26 | eldifad | |- ( ph -> C e. Word W ) |
| 28 | 1 2 3 4 5 6 | efgsdm | |- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
| 29 | 28 | simp1bi | |- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
| 30 | 8 29 | syl | |- ( ph -> A e. ( Word W \ { (/) } ) ) |
| 31 | 30 | eldifad | |- ( ph -> A e. Word W ) |
| 32 | wrdf | |- ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
|
| 33 | 31 32 | syl | |- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
| 34 | fzossfz | |- ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ... ( ( # ` A ) - 1 ) ) |
|
| 35 | lencl | |- ( A e. Word W -> ( # ` A ) e. NN0 ) |
|
| 36 | 31 35 | syl | |- ( ph -> ( # ` A ) e. NN0 ) |
| 37 | 36 | nn0zd | |- ( ph -> ( # ` A ) e. ZZ ) |
| 38 | fzoval | |- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
|
| 39 | 37 38 | syl | |- ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 40 | 34 39 | sseqtrrid | |- ( ph -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
| 41 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema | |- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
| 42 | 41 | simpld | |- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
| 43 | fzo0end | |- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
|
| 44 | 42 43 | syl | |- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 45 | 12 44 | eqeltrid | |- ( ph -> K e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 46 | 40 45 | sseldd | |- ( ph -> K e. ( 0 ..^ ( # ` A ) ) ) |
| 47 | 33 46 | ffvelcdmd | |- ( ph -> ( A ` K ) e. W ) |
| 48 | 47 | s1cld | |- ( ph -> <" ( A ` K ) "> e. Word W ) |
| 49 | eldifsn | |- ( C e. ( Word W \ { (/) } ) <-> ( C e. Word W /\ C =/= (/) ) ) |
|
| 50 | lennncl | |- ( ( C e. Word W /\ C =/= (/) ) -> ( # ` C ) e. NN ) |
|
| 51 | 49 50 | sylbi | |- ( C e. ( Word W \ { (/) } ) -> ( # ` C ) e. NN ) |
| 52 | 26 51 | syl | |- ( ph -> ( # ` C ) e. NN ) |
| 53 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` C ) ) <-> ( # ` C ) e. NN ) |
|
| 54 | 52 53 | sylibr | |- ( ph -> 0 e. ( 0 ..^ ( # ` C ) ) ) |
| 55 | ccatval1 | |- ( ( C e. Word W /\ <" ( A ` K ) "> e. Word W /\ 0 e. ( 0 ..^ ( # ` C ) ) ) -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( C ` 0 ) ) |
|
| 56 | 27 48 54 55 | syl3anc | |- ( ph -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( C ` 0 ) ) |
| 57 | 1 2 3 4 5 6 | efgsdm | |- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
| 58 | 57 | simp1bi | |- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
| 59 | 9 58 | syl | |- ( ph -> B e. ( Word W \ { (/) } ) ) |
| 60 | 59 | eldifad | |- ( ph -> B e. Word W ) |
| 61 | wrdf | |- ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
|
| 62 | 60 61 | syl | |- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
| 63 | fzossfz | |- ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ... ( ( # ` B ) - 1 ) ) |
|
| 64 | lencl | |- ( B e. Word W -> ( # ` B ) e. NN0 ) |
|
| 65 | 60 64 | syl | |- ( ph -> ( # ` B ) e. NN0 ) |
| 66 | 65 | nn0zd | |- ( ph -> ( # ` B ) e. ZZ ) |
| 67 | fzoval | |- ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
|
| 68 | 66 67 | syl | |- ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 69 | 63 68 | sseqtrrid | |- ( ph -> ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ..^ ( # ` B ) ) ) |
| 70 | 41 | simprd | |- ( ph -> ( ( # ` B ) - 1 ) e. NN ) |
| 71 | fzo0end | |- ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
|
| 72 | 70 71 | syl | |- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 73 | 13 72 | eqeltrid | |- ( ph -> L e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 74 | 69 73 | sseldd | |- ( ph -> L e. ( 0 ..^ ( # ` B ) ) ) |
| 75 | 62 74 | ffvelcdmd | |- ( ph -> ( B ` L ) e. W ) |
| 76 | 75 | s1cld | |- ( ph -> <" ( B ` L ) "> e. Word W ) |
| 77 | ccatval1 | |- ( ( C e. Word W /\ <" ( B ` L ) "> e. Word W /\ 0 e. ( 0 ..^ ( # ` C ) ) ) -> ( ( C ++ <" ( B ` L ) "> ) ` 0 ) = ( C ` 0 ) ) |
|
| 78 | 27 76 54 77 | syl3anc | |- ( ph -> ( ( C ++ <" ( B ` L ) "> ) ` 0 ) = ( C ` 0 ) ) |
| 79 | 56 78 | eqtr4d | |- ( ph -> ( ( C ++ <" ( A ` K ) "> ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) |
| 80 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 81 | 1 80 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 82 | 81 47 | sselid | |- ( ph -> ( A ` K ) e. Word ( I X. 2o ) ) |
| 83 | lencl | |- ( ( A ` K ) e. Word ( I X. 2o ) -> ( # ` ( A ` K ) ) e. NN0 ) |
|
| 84 | 82 83 | syl | |- ( ph -> ( # ` ( A ` K ) ) e. NN0 ) |
| 85 | 84 | nn0red | |- ( ph -> ( # ` ( A ` K ) ) e. RR ) |
| 86 | 2rp | |- 2 e. RR+ |
|
| 87 | ltaddrp | |- ( ( ( # ` ( A ` K ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( A ` K ) ) < ( ( # ` ( A ` K ) ) + 2 ) ) |
|
| 88 | 85 86 87 | sylancl | |- ( ph -> ( # ` ( A ` K ) ) < ( ( # ` ( A ` K ) ) + 2 ) ) |
| 89 | 36 | nn0red | |- ( ph -> ( # ` A ) e. RR ) |
| 90 | 89 | lem1d | |- ( ph -> ( ( # ` A ) - 1 ) <_ ( # ` A ) ) |
| 91 | fznn | |- ( ( # ` A ) e. ZZ -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) |
|
| 92 | 37 91 | syl | |- ( ph -> ( ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) <-> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` A ) - 1 ) <_ ( # ` A ) ) ) ) |
| 93 | 42 90 92 | mpbir2and | |- ( ph -> ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) |
| 94 | 1 2 3 4 5 6 | efgsres | |- ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) |
| 95 | 8 93 94 | syl2anc | |- ( ph -> ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S ) |
| 96 | 1 2 3 4 5 6 | efgsval | |- ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) |
| 97 | 95 96 | syl | |- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) ) |
| 98 | fz1ssfz0 | |- ( 1 ... ( # ` A ) ) C_ ( 0 ... ( # ` A ) ) |
|
| 99 | 98 93 | sselid | |- ( ph -> ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) |
| 100 | pfxres | |- ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) |
|
| 101 | 31 99 100 | syl2anc | |- ( ph -> ( A prefix ( ( # ` A ) - 1 ) ) = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) |
| 102 | 101 | fveq2d | |- ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) |
| 103 | pfxlen | |- ( ( A e. Word W /\ ( ( # ` A ) - 1 ) e. ( 0 ... ( # ` A ) ) ) -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) |
|
| 104 | 31 99 103 | syl2anc | |- ( ph -> ( # ` ( A prefix ( ( # ` A ) - 1 ) ) ) = ( ( # ` A ) - 1 ) ) |
| 105 | 102 104 | eqtr3d | |- ( ph -> ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( ( # ` A ) - 1 ) ) |
| 106 | 105 | oveq1d | |- ( ph -> ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) = ( ( ( # ` A ) - 1 ) - 1 ) ) |
| 107 | 106 12 | eqtr4di | |- ( ph -> ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) = K ) |
| 108 | 107 | fveq2d | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` ( ( # ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) - 1 ) ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` K ) ) |
| 109 | 45 | fvresd | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` K ) = ( A ` K ) ) |
| 110 | 97 108 109 | 3eqtrd | |- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( A ` K ) ) |
| 111 | 110 | fveq2d | |- ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) = ( # ` ( A ` K ) ) ) |
| 112 | 1 2 3 4 5 6 | efgsdmi | |- ( ( A e. dom S /\ ( ( # ` A ) - 1 ) e. NN ) -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
| 113 | 8 42 112 | syl2anc | |- ( ph -> ( S ` A ) e. ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) ) |
| 114 | 12 | fveq2i | |- ( A ` K ) = ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) |
| 115 | 114 | fveq2i | |- ( T ` ( A ` K ) ) = ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
| 116 | 115 | rneqi | |- ran ( T ` ( A ` K ) ) = ran ( T ` ( A ` ( ( ( # ` A ) - 1 ) - 1 ) ) ) |
| 117 | 113 116 | eleqtrrdi | |- ( ph -> ( S ` A ) e. ran ( T ` ( A ` K ) ) ) |
| 118 | 1 2 3 4 | efgtlen | |- ( ( ( A ` K ) e. W /\ ( S ` A ) e. ran ( T ` ( A ` K ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` K ) ) + 2 ) ) |
| 119 | 47 117 118 | syl2anc | |- ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( A ` K ) ) + 2 ) ) |
| 120 | 88 111 119 | 3brtr4d | |- ( ph -> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) |
| 121 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | efgredleme | |- ( ph -> ( ( A ` K ) e. ran ( T ` ( S ` C ) ) /\ ( B ` L ) e. ran ( T ` ( S ` C ) ) ) ) |
| 122 | 121 | simpld | |- ( ph -> ( A ` K ) e. ran ( T ` ( S ` C ) ) ) |
| 123 | 1 2 3 4 5 6 | efgsp1 | |- ( ( C e. dom S /\ ( A ` K ) e. ran ( T ` ( S ` C ) ) ) -> ( C ++ <" ( A ` K ) "> ) e. dom S ) |
| 124 | 22 122 123 | syl2anc | |- ( ph -> ( C ++ <" ( A ` K ) "> ) e. dom S ) |
| 125 | 1 2 3 4 5 6 | efgsval2 | |- ( ( C e. Word W /\ ( A ` K ) e. W /\ ( C ++ <" ( A ` K ) "> ) e. dom S ) -> ( S ` ( C ++ <" ( A ` K ) "> ) ) = ( A ` K ) ) |
| 126 | 27 47 124 125 | syl3anc | |- ( ph -> ( S ` ( C ++ <" ( A ` K ) "> ) ) = ( A ` K ) ) |
| 127 | 110 126 | eqtr4d | |- ( ph -> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) |
| 128 | 2fveq3 | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) ) |
|
| 129 | 128 | breq1d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) |
| 130 | fveqeq2 | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) ) ) |
|
| 131 | fveq1 | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( a ` 0 ) = ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) ) |
|
| 132 | 131 | eqeq1d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) |
| 133 | 130 132 | imbi12d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) |
| 134 | 129 133 | imbi12d | |- ( a = ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 135 | fveq2 | |- ( b = ( C ++ <" ( A ` K ) "> ) -> ( S ` b ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) |
|
| 136 | 135 | eqeq2d | |- ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) ) ) |
| 137 | fveq1 | |- ( b = ( C ++ <" ( A ` K ) "> ) -> ( b ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) |
|
| 138 | 137 | eqeq2d | |- ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) |
| 139 | 136 138 | imbi12d | |- ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) |
| 140 | 139 | imbi2d | |- ( b = ( C ++ <" ( A ` K ) "> ) -> ( ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` b ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) ) |
| 141 | 134 140 | rspc2va | |- ( ( ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) e. dom S /\ ( C ++ <" ( A ` K ) "> ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) |
| 142 | 95 124 7 141 | syl21anc | |- ( ph -> ( ( # ` ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( A ` K ) "> ) ) -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) ) ) |
| 143 | 120 127 142 | mp2d | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( A ` K ) "> ) ` 0 ) ) |
| 144 | 81 75 | sselid | |- ( ph -> ( B ` L ) e. Word ( I X. 2o ) ) |
| 145 | lencl | |- ( ( B ` L ) e. Word ( I X. 2o ) -> ( # ` ( B ` L ) ) e. NN0 ) |
|
| 146 | 144 145 | syl | |- ( ph -> ( # ` ( B ` L ) ) e. NN0 ) |
| 147 | 146 | nn0red | |- ( ph -> ( # ` ( B ` L ) ) e. RR ) |
| 148 | ltaddrp | |- ( ( ( # ` ( B ` L ) ) e. RR /\ 2 e. RR+ ) -> ( # ` ( B ` L ) ) < ( ( # ` ( B ` L ) ) + 2 ) ) |
|
| 149 | 147 86 148 | sylancl | |- ( ph -> ( # ` ( B ` L ) ) < ( ( # ` ( B ` L ) ) + 2 ) ) |
| 150 | 65 | nn0red | |- ( ph -> ( # ` B ) e. RR ) |
| 151 | 150 | lem1d | |- ( ph -> ( ( # ` B ) - 1 ) <_ ( # ` B ) ) |
| 152 | fznn | |- ( ( # ` B ) e. ZZ -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) |
|
| 153 | 66 152 | syl | |- ( ph -> ( ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) <-> ( ( ( # ` B ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) <_ ( # ` B ) ) ) ) |
| 154 | 70 151 153 | mpbir2and | |- ( ph -> ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) |
| 155 | 1 2 3 4 5 6 | efgsres | |- ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. ( 1 ... ( # ` B ) ) ) -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) |
| 156 | 9 154 155 | syl2anc | |- ( ph -> ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S ) |
| 157 | 1 2 3 4 5 6 | efgsval | |- ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
| 158 | 156 157 | syl | |- ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) ) |
| 159 | fz1ssfz0 | |- ( 1 ... ( # ` B ) ) C_ ( 0 ... ( # ` B ) ) |
|
| 160 | 159 154 | sselid | |- ( ph -> ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) |
| 161 | pfxres | |- ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) |
|
| 162 | 60 160 161 | syl2anc | |- ( ph -> ( B prefix ( ( # ` B ) - 1 ) ) = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) |
| 163 | 162 | fveq2d | |- ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) |
| 164 | pfxlen | |- ( ( B e. Word W /\ ( ( # ` B ) - 1 ) e. ( 0 ... ( # ` B ) ) ) -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) |
|
| 165 | 60 160 164 | syl2anc | |- ( ph -> ( # ` ( B prefix ( ( # ` B ) - 1 ) ) ) = ( ( # ` B ) - 1 ) ) |
| 166 | 163 165 | eqtr3d | |- ( ph -> ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( ( # ` B ) - 1 ) ) |
| 167 | 166 | oveq1d | |- ( ph -> ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) = ( ( ( # ` B ) - 1 ) - 1 ) ) |
| 168 | 167 13 | eqtr4di | |- ( ph -> ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) = L ) |
| 169 | 168 | fveq2d | |- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` ( ( # ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) - 1 ) ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` L ) ) |
| 170 | 73 | fvresd | |- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` L ) = ( B ` L ) ) |
| 171 | 158 169 170 | 3eqtrd | |- ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( B ` L ) ) |
| 172 | 171 | fveq2d | |- ( ph -> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) = ( # ` ( B ` L ) ) ) |
| 173 | 1 2 3 4 5 6 | efgsdmi | |- ( ( B e. dom S /\ ( ( # ` B ) - 1 ) e. NN ) -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 174 | 9 70 173 | syl2anc | |- ( ph -> ( S ` B ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 175 | 10 174 | eqeltrd | |- ( ph -> ( S ` A ) e. ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) ) |
| 176 | 13 | fveq2i | |- ( B ` L ) = ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) |
| 177 | 176 | fveq2i | |- ( T ` ( B ` L ) ) = ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 178 | 177 | rneqi | |- ran ( T ` ( B ` L ) ) = ran ( T ` ( B ` ( ( ( # ` B ) - 1 ) - 1 ) ) ) |
| 179 | 175 178 | eleqtrrdi | |- ( ph -> ( S ` A ) e. ran ( T ` ( B ` L ) ) ) |
| 180 | 1 2 3 4 | efgtlen | |- ( ( ( B ` L ) e. W /\ ( S ` A ) e. ran ( T ` ( B ` L ) ) ) -> ( # ` ( S ` A ) ) = ( ( # ` ( B ` L ) ) + 2 ) ) |
| 181 | 75 179 180 | syl2anc | |- ( ph -> ( # ` ( S ` A ) ) = ( ( # ` ( B ` L ) ) + 2 ) ) |
| 182 | 149 172 181 | 3brtr4d | |- ( ph -> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) |
| 183 | 121 | simprd | |- ( ph -> ( B ` L ) e. ran ( T ` ( S ` C ) ) ) |
| 184 | 1 2 3 4 5 6 | efgsp1 | |- ( ( C e. dom S /\ ( B ` L ) e. ran ( T ` ( S ` C ) ) ) -> ( C ++ <" ( B ` L ) "> ) e. dom S ) |
| 185 | 22 183 184 | syl2anc | |- ( ph -> ( C ++ <" ( B ` L ) "> ) e. dom S ) |
| 186 | 1 2 3 4 5 6 | efgsval2 | |- ( ( C e. Word W /\ ( B ` L ) e. W /\ ( C ++ <" ( B ` L ) "> ) e. dom S ) -> ( S ` ( C ++ <" ( B ` L ) "> ) ) = ( B ` L ) ) |
| 187 | 27 75 185 186 | syl3anc | |- ( ph -> ( S ` ( C ++ <" ( B ` L ) "> ) ) = ( B ` L ) ) |
| 188 | 171 187 | eqtr4d | |- ( ph -> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) |
| 189 | 2fveq3 | |- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( # ` ( S ` a ) ) = ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) ) |
|
| 190 | 189 | breq1d | |- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) <-> ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) ) ) |
| 191 | fveqeq2 | |- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( S ` a ) = ( S ` b ) <-> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) ) ) |
|
| 192 | fveq1 | |- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( a ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) |
|
| 193 | 192 | eqeq1d | |- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( a ` 0 ) = ( b ` 0 ) <-> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) |
| 194 | 191 193 | imbi12d | |- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) |
| 195 | 190 194 | imbi12d | |- ( a = ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) -> ( ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) ) ) |
| 196 | fveq2 | |- ( b = ( C ++ <" ( B ` L ) "> ) -> ( S ` b ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) |
|
| 197 | 196 | eqeq2d | |- ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) <-> ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) ) ) |
| 198 | fveq1 | |- ( b = ( C ++ <" ( B ` L ) "> ) -> ( b ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) |
|
| 199 | 198 | eqeq2d | |- ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) <-> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) |
| 200 | 197 199 | imbi12d | |- ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) <-> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) |
| 201 | 200 | imbi2d | |- ( b = ( C ++ <" ( B ` L ) "> ) -> ( ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` b ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( b ` 0 ) ) ) <-> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) ) |
| 202 | 195 201 | rspc2va | |- ( ( ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) e. dom S /\ ( C ++ <" ( B ` L ) "> ) e. dom S ) /\ A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) -> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) |
| 203 | 156 185 7 202 | syl21anc | |- ( ph -> ( ( # ` ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) ) < ( # ` ( S ` A ) ) -> ( ( S ` ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ) = ( S ` ( C ++ <" ( B ` L ) "> ) ) -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) ) ) |
| 204 | 182 188 203 | mp2d | |- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( ( C ++ <" ( B ` L ) "> ) ` 0 ) ) |
| 205 | 79 143 204 | 3eqtr4d | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) ) |
| 206 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) <-> ( ( # ` A ) - 1 ) e. NN ) |
|
| 207 | 42 206 | sylibr | |- ( ph -> 0 e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 208 | 207 | fvresd | |- ( ph -> ( ( A |` ( 0 ..^ ( ( # ` A ) - 1 ) ) ) ` 0 ) = ( A ` 0 ) ) |
| 209 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) <-> ( ( # ` B ) - 1 ) e. NN ) |
|
| 210 | 70 209 | sylibr | |- ( ph -> 0 e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 211 | 210 | fvresd | |- ( ph -> ( ( B |` ( 0 ..^ ( ( # ` B ) - 1 ) ) ) ` 0 ) = ( B ` 0 ) ) |
| 212 | 205 208 211 | 3eqtr3d | |- ( ph -> ( A ` 0 ) = ( B ` 0 ) ) |