This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s111 | |- ( ( S e. A /\ T e. A ) -> ( <" S "> = <" T "> <-> S = T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val | |- ( S e. A -> <" S "> = { <. 0 , S >. } ) |
|
| 2 | s1val | |- ( T e. A -> <" T "> = { <. 0 , T >. } ) |
|
| 3 | 1 2 | eqeqan12d | |- ( ( S e. A /\ T e. A ) -> ( <" S "> = <" T "> <-> { <. 0 , S >. } = { <. 0 , T >. } ) ) |
| 4 | opex | |- <. 0 , S >. e. _V |
|
| 5 | sneqbg | |- ( <. 0 , S >. e. _V -> ( { <. 0 , S >. } = { <. 0 , T >. } <-> <. 0 , S >. = <. 0 , T >. ) ) |
|
| 6 | 4 5 | mp1i | |- ( ( S e. A /\ T e. A ) -> ( { <. 0 , S >. } = { <. 0 , T >. } <-> <. 0 , S >. = <. 0 , T >. ) ) |
| 7 | 0z | |- 0 e. ZZ |
|
| 8 | eqid | |- 0 = 0 |
|
| 9 | opthg | |- ( ( 0 e. ZZ /\ S e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> ( 0 = 0 /\ S = T ) ) ) |
|
| 10 | 9 | baibd | |- ( ( ( 0 e. ZZ /\ S e. A ) /\ 0 = 0 ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) |
| 11 | 8 10 | mpan2 | |- ( ( 0 e. ZZ /\ S e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) |
| 12 | 7 11 | mpan | |- ( S e. A -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) |
| 13 | 12 | adantr | |- ( ( S e. A /\ T e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) |
| 14 | 3 6 13 | 3bitrd | |- ( ( S e. A /\ T e. A ) -> ( <" S "> = <" T "> <-> S = T ) ) |