This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Length of a prefix. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxlen | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix L ) ) = L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxfn | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S prefix L ) Fn ( 0 ..^ L ) ) |
|
| 2 | hashfn | |- ( ( S prefix L ) Fn ( 0 ..^ L ) -> ( # ` ( S prefix L ) ) = ( # ` ( 0 ..^ L ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix L ) ) = ( # ` ( 0 ..^ L ) ) ) |
| 4 | elfznn0 | |- ( L e. ( 0 ... ( # ` S ) ) -> L e. NN0 ) |
|
| 5 | 4 | adantl | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> L e. NN0 ) |
| 6 | hashfzo0 | |- ( L e. NN0 -> ( # ` ( 0 ..^ L ) ) = L ) |
|
| 7 | 5 6 | syl | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( 0 ..^ L ) ) = L ) |
| 8 | 3 7 | eqtrd | |- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix L ) ) = L ) |