This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgmval.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| Assertion | efgmf | |- M : ( I X. 2o ) --> ( I X. 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgmval.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 2 | 2oconcl | |- ( z e. 2o -> ( 1o \ z ) e. 2o ) |
|
| 3 | opelxpi | |- ( ( y e. I /\ ( 1o \ z ) e. 2o ) -> <. y , ( 1o \ z ) >. e. ( I X. 2o ) ) |
|
| 4 | 2 3 | sylan2 | |- ( ( y e. I /\ z e. 2o ) -> <. y , ( 1o \ z ) >. e. ( I X. 2o ) ) |
| 5 | 4 | rgen2 | |- A. y e. I A. z e. 2o <. y , ( 1o \ z ) >. e. ( I X. 2o ) |
| 6 | 1 | fmpo | |- ( A. y e. I A. z e. 2o <. y , ( 1o \ z ) >. e. ( I X. 2o ) <-> M : ( I X. 2o ) --> ( I X. 2o ) ) |
| 7 | 5 6 | mpbi | |- M : ( I X. 2o ) --> ( I X. 2o ) |