This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
||
| efgredlem.2 | |- ( ph -> A e. dom S ) |
||
| efgredlem.3 | |- ( ph -> B e. dom S ) |
||
| efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
||
| efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
||
| Assertion | efgredlema | |- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
|
| 8 | efgredlem.2 | |- ( ph -> A e. dom S ) |
|
| 9 | efgredlem.3 | |- ( ph -> B e. dom S ) |
|
| 10 | efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
|
| 11 | efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
|
| 12 | 1 2 3 4 5 6 | efgsval | |- ( B e. dom S -> ( S ` B ) = ( B ` ( ( # ` B ) - 1 ) ) ) |
| 13 | 9 12 | syl | |- ( ph -> ( S ` B ) = ( B ` ( ( # ` B ) - 1 ) ) ) |
| 14 | 1 2 3 4 5 6 | efgsval | |- ( A e. dom S -> ( S ` A ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 15 | 8 14 | syl | |- ( ph -> ( S ` A ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 16 | 10 15 | eqtr3d | |- ( ph -> ( S ` B ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 17 | 13 16 | eqtr3d | |- ( ph -> ( B ` ( ( # ` B ) - 1 ) ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 18 | oveq1 | |- ( ( # ` A ) = 1 -> ( ( # ` A ) - 1 ) = ( 1 - 1 ) ) |
|
| 19 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 20 | 18 19 | eqtrdi | |- ( ( # ` A ) = 1 -> ( ( # ` A ) - 1 ) = 0 ) |
| 21 | 20 | fveq2d | |- ( ( # ` A ) = 1 -> ( A ` ( ( # ` A ) - 1 ) ) = ( A ` 0 ) ) |
| 22 | 17 21 | sylan9eq | |- ( ( ph /\ ( # ` A ) = 1 ) -> ( B ` ( ( # ` B ) - 1 ) ) = ( A ` 0 ) ) |
| 23 | 10 | eleq1d | |- ( ph -> ( ( S ` A ) e. D <-> ( S ` B ) e. D ) ) |
| 24 | 1 2 3 4 5 6 | efgs1b | |- ( A e. dom S -> ( ( S ` A ) e. D <-> ( # ` A ) = 1 ) ) |
| 25 | 8 24 | syl | |- ( ph -> ( ( S ` A ) e. D <-> ( # ` A ) = 1 ) ) |
| 26 | 1 2 3 4 5 6 | efgs1b | |- ( B e. dom S -> ( ( S ` B ) e. D <-> ( # ` B ) = 1 ) ) |
| 27 | 9 26 | syl | |- ( ph -> ( ( S ` B ) e. D <-> ( # ` B ) = 1 ) ) |
| 28 | 23 25 27 | 3bitr3d | |- ( ph -> ( ( # ` A ) = 1 <-> ( # ` B ) = 1 ) ) |
| 29 | 28 | biimpa | |- ( ( ph /\ ( # ` A ) = 1 ) -> ( # ` B ) = 1 ) |
| 30 | oveq1 | |- ( ( # ` B ) = 1 -> ( ( # ` B ) - 1 ) = ( 1 - 1 ) ) |
|
| 31 | 30 19 | eqtrdi | |- ( ( # ` B ) = 1 -> ( ( # ` B ) - 1 ) = 0 ) |
| 32 | 31 | fveq2d | |- ( ( # ` B ) = 1 -> ( B ` ( ( # ` B ) - 1 ) ) = ( B ` 0 ) ) |
| 33 | 29 32 | syl | |- ( ( ph /\ ( # ` A ) = 1 ) -> ( B ` ( ( # ` B ) - 1 ) ) = ( B ` 0 ) ) |
| 34 | 22 33 | eqtr3d | |- ( ( ph /\ ( # ` A ) = 1 ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 35 | 11 34 | mtand | |- ( ph -> -. ( # ` A ) = 1 ) |
| 36 | 1 2 3 4 5 6 | efgsdm | |- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. u e. ( 1 ..^ ( # ` A ) ) ( A ` u ) e. ran ( T ` ( A ` ( u - 1 ) ) ) ) ) |
| 37 | 36 | simp1bi | |- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
| 38 | eldifsn | |- ( A e. ( Word W \ { (/) } ) <-> ( A e. Word W /\ A =/= (/) ) ) |
|
| 39 | lennncl | |- ( ( A e. Word W /\ A =/= (/) ) -> ( # ` A ) e. NN ) |
|
| 40 | 38 39 | sylbi | |- ( A e. ( Word W \ { (/) } ) -> ( # ` A ) e. NN ) |
| 41 | 8 37 40 | 3syl | |- ( ph -> ( # ` A ) e. NN ) |
| 42 | elnn1uz2 | |- ( ( # ` A ) e. NN <-> ( ( # ` A ) = 1 \/ ( # ` A ) e. ( ZZ>= ` 2 ) ) ) |
|
| 43 | 41 42 | sylib | |- ( ph -> ( ( # ` A ) = 1 \/ ( # ` A ) e. ( ZZ>= ` 2 ) ) ) |
| 44 | 43 | ord | |- ( ph -> ( -. ( # ` A ) = 1 -> ( # ` A ) e. ( ZZ>= ` 2 ) ) ) |
| 45 | 35 44 | mpd | |- ( ph -> ( # ` A ) e. ( ZZ>= ` 2 ) ) |
| 46 | uz2m1nn | |- ( ( # ` A ) e. ( ZZ>= ` 2 ) -> ( ( # ` A ) - 1 ) e. NN ) |
|
| 47 | 45 46 | syl | |- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
| 48 | 35 28 | mtbid | |- ( ph -> -. ( # ` B ) = 1 ) |
| 49 | 1 2 3 4 5 6 | efgsdm | |- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. u e. ( 1 ..^ ( # ` B ) ) ( B ` u ) e. ran ( T ` ( B ` ( u - 1 ) ) ) ) ) |
| 50 | 49 | simp1bi | |- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
| 51 | eldifsn | |- ( B e. ( Word W \ { (/) } ) <-> ( B e. Word W /\ B =/= (/) ) ) |
|
| 52 | lennncl | |- ( ( B e. Word W /\ B =/= (/) ) -> ( # ` B ) e. NN ) |
|
| 53 | 51 52 | sylbi | |- ( B e. ( Word W \ { (/) } ) -> ( # ` B ) e. NN ) |
| 54 | 9 50 53 | 3syl | |- ( ph -> ( # ` B ) e. NN ) |
| 55 | elnn1uz2 | |- ( ( # ` B ) e. NN <-> ( ( # ` B ) = 1 \/ ( # ` B ) e. ( ZZ>= ` 2 ) ) ) |
|
| 56 | 54 55 | sylib | |- ( ph -> ( ( # ` B ) = 1 \/ ( # ` B ) e. ( ZZ>= ` 2 ) ) ) |
| 57 | 56 | ord | |- ( ph -> ( -. ( # ` B ) = 1 -> ( # ` B ) e. ( ZZ>= ` 2 ) ) ) |
| 58 | 48 57 | mpd | |- ( ph -> ( # ` B ) e. ( ZZ>= ` 2 ) ) |
| 59 | uz2m1nn | |- ( ( # ` B ) e. ( ZZ>= ` 2 ) -> ( ( # ` B ) - 1 ) e. NN ) |
|
| 60 | 58 59 | syl | |- ( ph -> ( ( # ` B ) - 1 ) e. NN ) |
| 61 | 47 60 | jca | |- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |