This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by AV, 11-May-2020) (Revised by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | splval | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-splice | |- splice = ( s e. _V , b e. _V |-> ( ( ( s prefix ( 1st ` ( 1st ` b ) ) ) ++ ( 2nd ` b ) ) ++ ( s substr <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. ) ) ) |
|
| 2 | 1 | a1i | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> splice = ( s e. _V , b e. _V |-> ( ( ( s prefix ( 1st ` ( 1st ` b ) ) ) ++ ( 2nd ` b ) ) ++ ( s substr <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. ) ) ) ) |
| 3 | simprl | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> s = S ) |
|
| 4 | 2fveq3 | |- ( b = <. F , T , R >. -> ( 1st ` ( 1st ` b ) ) = ( 1st ` ( 1st ` <. F , T , R >. ) ) ) |
|
| 5 | 4 | adantl | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( 1st ` ( 1st ` b ) ) = ( 1st ` ( 1st ` <. F , T , R >. ) ) ) |
| 6 | ot1stg | |- ( ( F e. W /\ T e. X /\ R e. Y ) -> ( 1st ` ( 1st ` <. F , T , R >. ) ) = F ) |
|
| 7 | 6 | adantl | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> ( 1st ` ( 1st ` <. F , T , R >. ) ) = F ) |
| 8 | 5 7 | sylan9eqr | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> ( 1st ` ( 1st ` b ) ) = F ) |
| 9 | 3 8 | oveq12d | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> ( s prefix ( 1st ` ( 1st ` b ) ) ) = ( S prefix F ) ) |
| 10 | fveq2 | |- ( b = <. F , T , R >. -> ( 2nd ` b ) = ( 2nd ` <. F , T , R >. ) ) |
|
| 11 | 10 | adantl | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( 2nd ` b ) = ( 2nd ` <. F , T , R >. ) ) |
| 12 | ot3rdg | |- ( R e. Y -> ( 2nd ` <. F , T , R >. ) = R ) |
|
| 13 | 12 | 3ad2ant3 | |- ( ( F e. W /\ T e. X /\ R e. Y ) -> ( 2nd ` <. F , T , R >. ) = R ) |
| 14 | 13 | adantl | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> ( 2nd ` <. F , T , R >. ) = R ) |
| 15 | 11 14 | sylan9eqr | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> ( 2nd ` b ) = R ) |
| 16 | 9 15 | oveq12d | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> ( ( s prefix ( 1st ` ( 1st ` b ) ) ) ++ ( 2nd ` b ) ) = ( ( S prefix F ) ++ R ) ) |
| 17 | 2fveq3 | |- ( b = <. F , T , R >. -> ( 2nd ` ( 1st ` b ) ) = ( 2nd ` ( 1st ` <. F , T , R >. ) ) ) |
|
| 18 | 17 | adantl | |- ( ( s = S /\ b = <. F , T , R >. ) -> ( 2nd ` ( 1st ` b ) ) = ( 2nd ` ( 1st ` <. F , T , R >. ) ) ) |
| 19 | ot2ndg | |- ( ( F e. W /\ T e. X /\ R e. Y ) -> ( 2nd ` ( 1st ` <. F , T , R >. ) ) = T ) |
|
| 20 | 19 | adantl | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> ( 2nd ` ( 1st ` <. F , T , R >. ) ) = T ) |
| 21 | 18 20 | sylan9eqr | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> ( 2nd ` ( 1st ` b ) ) = T ) |
| 22 | 3 | fveq2d | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> ( # ` s ) = ( # ` S ) ) |
| 23 | 21 22 | opeq12d | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. = <. T , ( # ` S ) >. ) |
| 24 | 3 23 | oveq12d | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> ( s substr <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. ) = ( S substr <. T , ( # ` S ) >. ) ) |
| 25 | 16 24 | oveq12d | |- ( ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) /\ ( s = S /\ b = <. F , T , R >. ) ) -> ( ( ( s prefix ( 1st ` ( 1st ` b ) ) ) ++ ( 2nd ` b ) ) ++ ( s substr <. ( 2nd ` ( 1st ` b ) ) , ( # ` s ) >. ) ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 26 | elex | |- ( S e. V -> S e. _V ) |
|
| 27 | 26 | adantr | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> S e. _V ) |
| 28 | otex | |- <. F , T , R >. e. _V |
|
| 29 | 28 | a1i | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> <. F , T , R >. e. _V ) |
| 30 | ovexd | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) e. _V ) |
|
| 31 | 2 25 27 29 30 | ovmpod | |- ( ( S e. V /\ ( F e. W /\ T e. X /\ R e. Y ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |