This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efgval . (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| Assertion | efgrcl | |- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | 2on0 | |- 2o =/= (/) |
|
| 3 | dmxp | |- ( 2o =/= (/) -> dom ( I X. 2o ) = I ) |
|
| 4 | 2 3 | ax-mp | |- dom ( I X. 2o ) = I |
| 5 | elfvex | |- ( A e. ( _I ` Word ( I X. 2o ) ) -> Word ( I X. 2o ) e. _V ) |
|
| 6 | 5 1 | eleq2s | |- ( A e. W -> Word ( I X. 2o ) e. _V ) |
| 7 | wrdexb | |- ( ( I X. 2o ) e. _V <-> Word ( I X. 2o ) e. _V ) |
|
| 8 | 6 7 | sylibr | |- ( A e. W -> ( I X. 2o ) e. _V ) |
| 9 | 8 | dmexd | |- ( A e. W -> dom ( I X. 2o ) e. _V ) |
| 10 | 4 9 | eqeltrrid | |- ( A e. W -> I e. _V ) |
| 11 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 12 | 6 11 | syl | |- ( A e. W -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 13 | 1 12 | eqtrid | |- ( A e. W -> W = Word ( I X. 2o ) ) |
| 14 | 10 13 | jca | |- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |