This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the auxiliary function S defining a sequence of extensions. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgsval | |- ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | id | |- ( f = F -> f = F ) |
|
| 8 | fveq2 | |- ( f = F -> ( # ` f ) = ( # ` F ) ) |
|
| 9 | 8 | oveq1d | |- ( f = F -> ( ( # ` f ) - 1 ) = ( ( # ` F ) - 1 ) ) |
| 10 | 7 9 | fveq12d | |- ( f = F -> ( f ` ( ( # ` f ) - 1 ) ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 11 | id | |- ( m = f -> m = f ) |
|
| 12 | fveq2 | |- ( m = f -> ( # ` m ) = ( # ` f ) ) |
|
| 13 | 12 | oveq1d | |- ( m = f -> ( ( # ` m ) - 1 ) = ( ( # ` f ) - 1 ) ) |
| 14 | 11 13 | fveq12d | |- ( m = f -> ( m ` ( ( # ` m ) - 1 ) ) = ( f ` ( ( # ` f ) - 1 ) ) ) |
| 15 | 14 | cbvmptv | |- ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) = ( f e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( f ` ( ( # ` f ) - 1 ) ) ) |
| 16 | 6 15 | eqtri | |- S = ( f e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( f ` ( ( # ` f ) - 1 ) ) ) |
| 17 | fvex | |- ( F ` ( ( # ` F ) - 1 ) ) e. _V |
|
| 18 | 10 16 17 | fvmpt | |- ( F e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |
| 19 | 1 2 3 4 5 6 | efgsf | |- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |
| 20 | 19 | fdmi | |- dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |
| 21 | 18 20 | eleq2s | |- ( F e. dom S -> ( S ` F ) = ( F ` ( ( # ` F ) - 1 ) ) ) |