This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatass | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( S ++ T ) ++ U ) = ( S ++ ( T ++ U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatcl | |- ( ( S e. Word B /\ T e. Word B ) -> ( S ++ T ) e. Word B ) |
|
| 2 | ccatcl | |- ( ( ( S ++ T ) e. Word B /\ U e. Word B ) -> ( ( S ++ T ) ++ U ) e. Word B ) |
|
| 3 | 1 2 | stoic3 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( S ++ T ) ++ U ) e. Word B ) |
| 4 | wrdfn | |- ( ( ( S ++ T ) ++ U ) e. Word B -> ( ( S ++ T ) ++ U ) Fn ( 0 ..^ ( # ` ( ( S ++ T ) ++ U ) ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( S ++ T ) ++ U ) Fn ( 0 ..^ ( # ` ( ( S ++ T ) ++ U ) ) ) ) |
| 6 | ccatlen | |- ( ( ( S ++ T ) e. Word B /\ U e. Word B ) -> ( # ` ( ( S ++ T ) ++ U ) ) = ( ( # ` ( S ++ T ) ) + ( # ` U ) ) ) |
|
| 7 | 1 6 | stoic3 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` ( ( S ++ T ) ++ U ) ) = ( ( # ` ( S ++ T ) ) + ( # ` U ) ) ) |
| 8 | ccatlen | |- ( ( S e. Word B /\ T e. Word B ) -> ( # ` ( S ++ T ) ) = ( ( # ` S ) + ( # ` T ) ) ) |
|
| 9 | 8 | 3adant3 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` ( S ++ T ) ) = ( ( # ` S ) + ( # ` T ) ) ) |
| 10 | 9 | oveq1d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` ( S ++ T ) ) + ( # ` U ) ) = ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) |
| 11 | 7 10 | eqtrd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` ( ( S ++ T ) ++ U ) ) = ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) |
| 12 | 11 | oveq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( 0 ..^ ( # ` ( ( S ++ T ) ++ U ) ) ) = ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
| 13 | 12 | fneq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( ( S ++ T ) ++ U ) Fn ( 0 ..^ ( # ` ( ( S ++ T ) ++ U ) ) ) <-> ( ( S ++ T ) ++ U ) Fn ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) |
| 14 | 5 13 | mpbid | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( S ++ T ) ++ U ) Fn ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
| 15 | simp1 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> S e. Word B ) |
|
| 16 | ccatcl | |- ( ( T e. Word B /\ U e. Word B ) -> ( T ++ U ) e. Word B ) |
|
| 17 | 16 | 3adant1 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( T ++ U ) e. Word B ) |
| 18 | ccatcl | |- ( ( S e. Word B /\ ( T ++ U ) e. Word B ) -> ( S ++ ( T ++ U ) ) e. Word B ) |
|
| 19 | 15 17 18 | syl2anc | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( S ++ ( T ++ U ) ) e. Word B ) |
| 20 | wrdfn | |- ( ( S ++ ( T ++ U ) ) e. Word B -> ( S ++ ( T ++ U ) ) Fn ( 0 ..^ ( # ` ( S ++ ( T ++ U ) ) ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( S ++ ( T ++ U ) ) Fn ( 0 ..^ ( # ` ( S ++ ( T ++ U ) ) ) ) ) |
| 22 | ccatlen | |- ( ( T e. Word B /\ U e. Word B ) -> ( # ` ( T ++ U ) ) = ( ( # ` T ) + ( # ` U ) ) ) |
|
| 23 | 22 | 3adant1 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` ( T ++ U ) ) = ( ( # ` T ) + ( # ` U ) ) ) |
| 24 | 23 | oveq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) + ( # ` ( T ++ U ) ) ) = ( ( # ` S ) + ( ( # ` T ) + ( # ` U ) ) ) ) |
| 25 | ccatlen | |- ( ( S e. Word B /\ ( T ++ U ) e. Word B ) -> ( # ` ( S ++ ( T ++ U ) ) ) = ( ( # ` S ) + ( # ` ( T ++ U ) ) ) ) |
|
| 26 | 15 17 25 | syl2anc | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` ( S ++ ( T ++ U ) ) ) = ( ( # ` S ) + ( # ` ( T ++ U ) ) ) ) |
| 27 | lencl | |- ( S e. Word B -> ( # ` S ) e. NN0 ) |
|
| 28 | 27 | 3ad2ant1 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` S ) e. NN0 ) |
| 29 | 28 | nn0cnd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` S ) e. CC ) |
| 30 | lencl | |- ( T e. Word B -> ( # ` T ) e. NN0 ) |
|
| 31 | 30 | 3ad2ant2 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` T ) e. NN0 ) |
| 32 | 31 | nn0cnd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` T ) e. CC ) |
| 33 | lencl | |- ( U e. Word B -> ( # ` U ) e. NN0 ) |
|
| 34 | 33 | 3ad2ant3 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` U ) e. NN0 ) |
| 35 | 34 | nn0cnd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` U ) e. CC ) |
| 36 | 29 32 35 | addassd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) = ( ( # ` S ) + ( ( # ` T ) + ( # ` U ) ) ) ) |
| 37 | 24 26 36 | 3eqtr4d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` ( S ++ ( T ++ U ) ) ) = ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) |
| 38 | 37 | oveq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( 0 ..^ ( # ` ( S ++ ( T ++ U ) ) ) ) = ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
| 39 | 38 | fneq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( S ++ ( T ++ U ) ) Fn ( 0 ..^ ( # ` ( S ++ ( T ++ U ) ) ) ) <-> ( S ++ ( T ++ U ) ) Fn ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) |
| 40 | 21 39 | mpbid | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( S ++ ( T ++ U ) ) Fn ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
| 41 | 28 | nn0zd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` S ) e. ZZ ) |
| 42 | fzospliti | |- ( ( x e. ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) /\ ( # ` S ) e. ZZ ) -> ( x e. ( 0 ..^ ( # ` S ) ) \/ x e. ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) |
|
| 43 | 42 | ex | |- ( x e. ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) -> ( ( # ` S ) e. ZZ -> ( x e. ( 0 ..^ ( # ` S ) ) \/ x e. ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) ) |
| 44 | 41 43 | mpan9 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( x e. ( 0 ..^ ( # ` S ) ) \/ x e. ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) |
| 45 | simp2 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> T e. Word B ) |
|
| 46 | id | |- ( x e. ( 0 ..^ ( # ` S ) ) -> x e. ( 0 ..^ ( # ` S ) ) ) |
|
| 47 | ccatval1 | |- ( ( S e. Word B /\ T e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ T ) ` x ) = ( S ` x ) ) |
|
| 48 | 15 45 46 47 | syl2an3an | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ T ) ` x ) = ( S ` x ) ) |
| 49 | 1 | 3adant3 | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( S ++ T ) e. Word B ) |
| 50 | 49 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( S ++ T ) e. Word B ) |
| 51 | simpl3 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> U e. Word B ) |
|
| 52 | 41 | uzidd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` S ) e. ( ZZ>= ` ( # ` S ) ) ) |
| 53 | uzaddcl | |- ( ( ( # ` S ) e. ( ZZ>= ` ( # ` S ) ) /\ ( # ` T ) e. NN0 ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) ) |
|
| 54 | 52 31 53 | syl2anc | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) ) |
| 55 | fzoss2 | |- ( ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) -> ( 0 ..^ ( # ` S ) ) C_ ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
|
| 56 | 54 55 | syl | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( 0 ..^ ( # ` S ) ) C_ ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
| 57 | 9 | oveq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( 0 ..^ ( # ` ( S ++ T ) ) ) = ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
| 58 | 56 57 | sseqtrrd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( 0 ..^ ( # ` S ) ) C_ ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
| 59 | 58 | sselda | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> x e. ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
| 60 | ccatval1 | |- ( ( ( S ++ T ) e. Word B /\ U e. Word B /\ x e. ( 0 ..^ ( # ` ( S ++ T ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ T ) ` x ) ) |
|
| 61 | 50 51 59 60 | syl3anc | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ T ) ` x ) ) |
| 62 | ccatval1 | |- ( ( S e. Word B /\ ( T ++ U ) e. Word B /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ ( T ++ U ) ) ` x ) = ( S ` x ) ) |
|
| 63 | 15 17 46 62 | syl2an3an | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S ++ ( T ++ U ) ) ` x ) = ( S ` x ) ) |
| 64 | 48 61 63 | 3eqtr4d | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ ( T ++ U ) ) ` x ) ) |
| 65 | 31 | nn0zd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` T ) e. ZZ ) |
| 66 | 41 65 | zaddcld | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ZZ ) |
| 67 | fzospliti | |- ( ( x e. ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) /\ ( ( # ` S ) + ( # ` T ) ) e. ZZ ) -> ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) \/ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) |
|
| 68 | 67 | ex | |- ( x e. ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) -> ( ( ( # ` S ) + ( # ` T ) ) e. ZZ -> ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) \/ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) ) |
| 69 | 66 68 | mpan9 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) \/ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) |
| 70 | id | |- ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) -> x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
|
| 71 | ccatval2 | |- ( ( S e. Word B /\ T e. Word B /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` x ) = ( T ` ( x - ( # ` S ) ) ) ) |
|
| 72 | 15 45 70 71 | syl2an3an | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` x ) = ( T ` ( x - ( # ` S ) ) ) ) |
| 73 | simpl2 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> T e. Word B ) |
|
| 74 | simpl3 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> U e. Word B ) |
|
| 75 | fzosubel3 | |- ( ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) /\ ( # ` T ) e. ZZ ) -> ( x - ( # ` S ) ) e. ( 0 ..^ ( # ` T ) ) ) |
|
| 76 | 75 | ex | |- ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) -> ( ( # ` T ) e. ZZ -> ( x - ( # ` S ) ) e. ( 0 ..^ ( # ` T ) ) ) ) |
| 77 | 65 76 | mpan9 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( x - ( # ` S ) ) e. ( 0 ..^ ( # ` T ) ) ) |
| 78 | ccatval1 | |- ( ( T e. Word B /\ U e. Word B /\ ( x - ( # ` S ) ) e. ( 0 ..^ ( # ` T ) ) ) -> ( ( T ++ U ) ` ( x - ( # ` S ) ) ) = ( T ` ( x - ( # ` S ) ) ) ) |
|
| 79 | 73 74 77 78 | syl3anc | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( T ++ U ) ` ( x - ( # ` S ) ) ) = ( T ` ( x - ( # ` S ) ) ) ) |
| 80 | 72 79 | eqtr4d | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` x ) = ( ( T ++ U ) ` ( x - ( # ` S ) ) ) ) |
| 81 | 49 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( S ++ T ) e. Word B ) |
| 82 | fzoss1 | |- ( ( # ` S ) e. ( ZZ>= ` 0 ) -> ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) C_ ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
|
| 83 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 84 | 82 83 | eleq2s | |- ( ( # ` S ) e. NN0 -> ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) C_ ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
| 85 | 28 84 | syl | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) C_ ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
| 86 | 85 57 | sseqtrrd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) C_ ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
| 87 | 86 | sselda | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> x e. ( 0 ..^ ( # ` ( S ++ T ) ) ) ) |
| 88 | 81 74 87 60 | syl3anc | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ T ) ` x ) ) |
| 89 | simpl1 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> S e. Word B ) |
|
| 90 | 17 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( T ++ U ) e. Word B ) |
| 91 | 66 | uzidd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( ( # ` S ) + ( # ` T ) ) ) ) |
| 92 | uzaddcl | |- ( ( ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( ( # ` S ) + ( # ` T ) ) ) /\ ( # ` U ) e. NN0 ) -> ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) e. ( ZZ>= ` ( ( # ` S ) + ( # ` T ) ) ) ) |
|
| 93 | 91 34 92 | syl2anc | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) e. ( ZZ>= ` ( ( # ` S ) + ( # ` T ) ) ) ) |
| 94 | fzoss2 | |- ( ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) e. ( ZZ>= ` ( ( # ` S ) + ( # ` T ) ) ) -> ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) C_ ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
|
| 95 | 93 94 | syl | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) C_ ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
| 96 | 24 36 | eqtr4d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) + ( # ` ( T ++ U ) ) ) = ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) |
| 97 | 96 | oveq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` ( T ++ U ) ) ) ) = ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
| 98 | 95 97 | sseqtrrd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) C_ ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` ( T ++ U ) ) ) ) ) |
| 99 | 98 | sselda | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` ( T ++ U ) ) ) ) ) |
| 100 | ccatval2 | |- ( ( S e. Word B /\ ( T ++ U ) e. Word B /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` ( T ++ U ) ) ) ) ) -> ( ( S ++ ( T ++ U ) ) ` x ) = ( ( T ++ U ) ` ( x - ( # ` S ) ) ) ) |
|
| 101 | 89 90 99 100 | syl3anc | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ ( T ++ U ) ) ` x ) = ( ( T ++ U ) ` ( x - ( # ` S ) ) ) ) |
| 102 | 80 88 101 | 3eqtr4d | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ ( T ++ U ) ) ` x ) ) |
| 103 | 9 | oveq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( x - ( # ` ( S ++ T ) ) ) = ( x - ( ( # ` S ) + ( # ` T ) ) ) ) |
| 104 | 103 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( x - ( # ` ( S ++ T ) ) ) = ( x - ( ( # ` S ) + ( # ` T ) ) ) ) |
| 105 | elfzoelz | |- ( x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) -> x e. ZZ ) |
|
| 106 | 105 | zcnd | |- ( x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) -> x e. CC ) |
| 107 | 106 | adantl | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> x e. CC ) |
| 108 | 29 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( # ` S ) e. CC ) |
| 109 | 32 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( # ` T ) e. CC ) |
| 110 | 107 108 109 | subsub4d | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( ( x - ( # ` S ) ) - ( # ` T ) ) = ( x - ( ( # ` S ) + ( # ` T ) ) ) ) |
| 111 | 104 110 | eqtr4d | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( x - ( # ` ( S ++ T ) ) ) = ( ( x - ( # ` S ) ) - ( # ` T ) ) ) |
| 112 | 111 | fveq2d | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( U ` ( x - ( # ` ( S ++ T ) ) ) ) = ( U ` ( ( x - ( # ` S ) ) - ( # ` T ) ) ) ) |
| 113 | simpl2 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> T e. Word B ) |
|
| 114 | simpl3 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> U e. Word B ) |
|
| 115 | 36 | oveq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) = ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( # ` S ) + ( ( # ` T ) + ( # ` U ) ) ) ) ) |
| 116 | 115 | eleq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) <-> x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( # ` S ) + ( ( # ` T ) + ( # ` U ) ) ) ) ) ) |
| 117 | 116 | biimpa | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( # ` S ) + ( ( # ` T ) + ( # ` U ) ) ) ) ) |
| 118 | 34 | nn0zd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( # ` U ) e. ZZ ) |
| 119 | 65 118 | zaddcld | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` T ) + ( # ` U ) ) e. ZZ ) |
| 120 | 41 65 119 | 3jca | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` S ) e. ZZ /\ ( # ` T ) e. ZZ /\ ( ( # ` T ) + ( # ` U ) ) e. ZZ ) ) |
| 121 | 120 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( ( # ` S ) e. ZZ /\ ( # ` T ) e. ZZ /\ ( ( # ` T ) + ( # ` U ) ) e. ZZ ) ) |
| 122 | fzosubel2 | |- ( ( x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( # ` S ) + ( ( # ` T ) + ( # ` U ) ) ) ) /\ ( ( # ` S ) e. ZZ /\ ( # ` T ) e. ZZ /\ ( ( # ` T ) + ( # ` U ) ) e. ZZ ) ) -> ( x - ( # ` S ) ) e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` U ) ) ) ) |
|
| 123 | 117 121 122 | syl2anc | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( x - ( # ` S ) ) e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` U ) ) ) ) |
| 124 | ccatval2 | |- ( ( T e. Word B /\ U e. Word B /\ ( x - ( # ` S ) ) e. ( ( # ` T ) ..^ ( ( # ` T ) + ( # ` U ) ) ) ) -> ( ( T ++ U ) ` ( x - ( # ` S ) ) ) = ( U ` ( ( x - ( # ` S ) ) - ( # ` T ) ) ) ) |
|
| 125 | 113 114 123 124 | syl3anc | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( ( T ++ U ) ` ( x - ( # ` S ) ) ) = ( U ` ( ( x - ( # ` S ) ) - ( # ` T ) ) ) ) |
| 126 | 112 125 | eqtr4d | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( U ` ( x - ( # ` ( S ++ T ) ) ) ) = ( ( T ++ U ) ` ( x - ( # ` S ) ) ) ) |
| 127 | 49 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( S ++ T ) e. Word B ) |
| 128 | 9 10 | oveq12d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( # ` ( S ++ T ) ) ..^ ( ( # ` ( S ++ T ) ) + ( # ` U ) ) ) = ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
| 129 | 128 | eleq2d | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( x e. ( ( # ` ( S ++ T ) ) ..^ ( ( # ` ( S ++ T ) ) + ( # ` U ) ) ) <-> x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) |
| 130 | 129 | biimpar | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> x e. ( ( # ` ( S ++ T ) ) ..^ ( ( # ` ( S ++ T ) ) + ( # ` U ) ) ) ) |
| 131 | ccatval2 | |- ( ( ( S ++ T ) e. Word B /\ U e. Word B /\ x e. ( ( # ` ( S ++ T ) ) ..^ ( ( # ` ( S ++ T ) ) + ( # ` U ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( U ` ( x - ( # ` ( S ++ T ) ) ) ) ) |
|
| 132 | 127 114 130 131 | syl3anc | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( U ` ( x - ( # ` ( S ++ T ) ) ) ) ) |
| 133 | simpl1 | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> S e. Word B ) |
|
| 134 | 17 | adantr | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( T ++ U ) e. Word B ) |
| 135 | fzoss1 | |- ( ( ( # ` S ) + ( # ` T ) ) e. ( ZZ>= ` ( # ` S ) ) -> ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) C_ ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
|
| 136 | 54 135 | syl | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) C_ ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) |
| 137 | 136 97 | sseqtrrd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) C_ ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` ( T ++ U ) ) ) ) ) |
| 138 | 137 | sselda | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` ( T ++ U ) ) ) ) ) |
| 139 | 133 134 138 100 | syl3anc | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( ( S ++ ( T ++ U ) ) ` x ) = ( ( T ++ U ) ` ( x - ( # ` S ) ) ) ) |
| 140 | 126 132 139 | 3eqtr4d | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ ( T ++ U ) ) ` x ) ) |
| 141 | 102 140 | jaodan | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ ( x e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) \/ x e. ( ( ( # ` S ) + ( # ` T ) ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ ( T ++ U ) ) ` x ) ) |
| 142 | 69 141 | syldan | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ ( T ++ U ) ) ` x ) ) |
| 143 | 64 142 | jaodan | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ ( x e. ( 0 ..^ ( # ` S ) ) \/ x e. ( ( # ` S ) ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ ( T ++ U ) ) ` x ) ) |
| 144 | 44 143 | syldan | |- ( ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) /\ x e. ( 0 ..^ ( ( ( # ` S ) + ( # ` T ) ) + ( # ` U ) ) ) ) -> ( ( ( S ++ T ) ++ U ) ` x ) = ( ( S ++ ( T ++ U ) ) ` x ) ) |
| 145 | 14 40 144 | eqfnfvd | |- ( ( S e. Word B /\ T e. Word B /\ U e. Word B ) -> ( ( S ++ T ) ++ U ) = ( S ++ ( T ++ U ) ) ) |