This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the domain of S , the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| Assertion | efgsdm | |- ( F e. dom S <-> ( F e. ( Word W \ { (/) } ) /\ ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | fveq1 | |- ( f = F -> ( f ` 0 ) = ( F ` 0 ) ) |
|
| 8 | 7 | eleq1d | |- ( f = F -> ( ( f ` 0 ) e. D <-> ( F ` 0 ) e. D ) ) |
| 9 | fveq2 | |- ( f = F -> ( # ` f ) = ( # ` F ) ) |
|
| 10 | 9 | oveq2d | |- ( f = F -> ( 1 ..^ ( # ` f ) ) = ( 1 ..^ ( # ` F ) ) ) |
| 11 | fveq1 | |- ( f = F -> ( f ` i ) = ( F ` i ) ) |
|
| 12 | fveq1 | |- ( f = F -> ( f ` ( i - 1 ) ) = ( F ` ( i - 1 ) ) ) |
|
| 13 | 12 | fveq2d | |- ( f = F -> ( T ` ( f ` ( i - 1 ) ) ) = ( T ` ( F ` ( i - 1 ) ) ) ) |
| 14 | 13 | rneqd | |- ( f = F -> ran ( T ` ( f ` ( i - 1 ) ) ) = ran ( T ` ( F ` ( i - 1 ) ) ) ) |
| 15 | 11 14 | eleq12d | |- ( f = F -> ( ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) <-> ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 16 | 10 15 | raleqbidv | |- ( f = F -> ( A. i e. ( 1 ..^ ( # ` f ) ) ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) <-> A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |
| 17 | 8 16 | anbi12d | |- ( f = F -> ( ( ( f ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` f ) ) ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) ) <-> ( ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) ) |
| 18 | 1 2 3 4 5 6 | efgsf | |- S : { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } --> W |
| 19 | 18 | fdmi | |- dom S = { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |
| 20 | fveq1 | |- ( t = f -> ( t ` 0 ) = ( f ` 0 ) ) |
|
| 21 | 20 | eleq1d | |- ( t = f -> ( ( t ` 0 ) e. D <-> ( f ` 0 ) e. D ) ) |
| 22 | fveq2 | |- ( k = i -> ( t ` k ) = ( t ` i ) ) |
|
| 23 | fvoveq1 | |- ( k = i -> ( t ` ( k - 1 ) ) = ( t ` ( i - 1 ) ) ) |
|
| 24 | 23 | fveq2d | |- ( k = i -> ( T ` ( t ` ( k - 1 ) ) ) = ( T ` ( t ` ( i - 1 ) ) ) ) |
| 25 | 24 | rneqd | |- ( k = i -> ran ( T ` ( t ` ( k - 1 ) ) ) = ran ( T ` ( t ` ( i - 1 ) ) ) ) |
| 26 | 22 25 | eleq12d | |- ( k = i -> ( ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) <-> ( t ` i ) e. ran ( T ` ( t ` ( i - 1 ) ) ) ) ) |
| 27 | 26 | cbvralvw | |- ( A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) <-> A. i e. ( 1 ..^ ( # ` t ) ) ( t ` i ) e. ran ( T ` ( t ` ( i - 1 ) ) ) ) |
| 28 | fveq2 | |- ( t = f -> ( # ` t ) = ( # ` f ) ) |
|
| 29 | 28 | oveq2d | |- ( t = f -> ( 1 ..^ ( # ` t ) ) = ( 1 ..^ ( # ` f ) ) ) |
| 30 | fveq1 | |- ( t = f -> ( t ` i ) = ( f ` i ) ) |
|
| 31 | fveq1 | |- ( t = f -> ( t ` ( i - 1 ) ) = ( f ` ( i - 1 ) ) ) |
|
| 32 | 31 | fveq2d | |- ( t = f -> ( T ` ( t ` ( i - 1 ) ) ) = ( T ` ( f ` ( i - 1 ) ) ) ) |
| 33 | 32 | rneqd | |- ( t = f -> ran ( T ` ( t ` ( i - 1 ) ) ) = ran ( T ` ( f ` ( i - 1 ) ) ) ) |
| 34 | 30 33 | eleq12d | |- ( t = f -> ( ( t ` i ) e. ran ( T ` ( t ` ( i - 1 ) ) ) <-> ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) ) ) |
| 35 | 29 34 | raleqbidv | |- ( t = f -> ( A. i e. ( 1 ..^ ( # ` t ) ) ( t ` i ) e. ran ( T ` ( t ` ( i - 1 ) ) ) <-> A. i e. ( 1 ..^ ( # ` f ) ) ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) ) ) |
| 36 | 27 35 | bitrid | |- ( t = f -> ( A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) <-> A. i e. ( 1 ..^ ( # ` f ) ) ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) ) ) |
| 37 | 21 36 | anbi12d | |- ( t = f -> ( ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) <-> ( ( f ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` f ) ) ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) ) ) ) |
| 38 | 37 | cbvrabv | |- { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } = { f e. ( Word W \ { (/) } ) | ( ( f ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` f ) ) ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) ) } |
| 39 | 19 38 | eqtri | |- dom S = { f e. ( Word W \ { (/) } ) | ( ( f ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` f ) ) ( f ` i ) e. ran ( T ` ( f ` ( i - 1 ) ) ) ) } |
| 40 | 17 39 | elrab2 | |- ( F e. dom S <-> ( F e. ( Word W \ { (/) } ) /\ ( ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) ) |
| 41 | 3anass | |- ( ( F e. ( Word W \ { (/) } ) /\ ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) <-> ( F e. ( Word W \ { (/) } ) /\ ( ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) ) |
|
| 42 | 40 41 | bitr4i | |- ( F e. dom S <-> ( F e. ( Word W \ { (/) } ) /\ ( F ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` F ) ) ( F ` i ) e. ran ( T ` ( F ` ( i - 1 ) ) ) ) ) |