This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzp1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzm1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
|
| 2 | eluzp1p1 | |- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 3 | eluzelcn | |- ( N e. ( ZZ>= ` M ) -> N e. CC ) |
|
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 6 | 3 4 5 | sylancl | |- ( N e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) = N ) |
| 7 | 6 | eleq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) <-> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 8 | 2 7 | imbitrid | |- ( N e. ( ZZ>= ` M ) -> ( ( N - 1 ) e. ( ZZ>= ` M ) -> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 9 | 8 | orim2d | |- ( N e. ( ZZ>= ` M ) -> ( ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) ) |
| 10 | 1 9 | mpd | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |