This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opth -like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 12-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatopth | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( ( A ++ B ) = ( C ++ D ) -> ( ( A ++ B ) prefix ( # ` A ) ) = ( ( C ++ D ) prefix ( # ` A ) ) ) |
|
| 2 | pfxccat1 | |- ( ( A e. Word X /\ B e. Word X ) -> ( ( A ++ B ) prefix ( # ` A ) ) = A ) |
|
| 3 | oveq2 | |- ( ( # ` A ) = ( # ` C ) -> ( ( C ++ D ) prefix ( # ` A ) ) = ( ( C ++ D ) prefix ( # ` C ) ) ) |
|
| 4 | pfxccat1 | |- ( ( C e. Word X /\ D e. Word X ) -> ( ( C ++ D ) prefix ( # ` C ) ) = C ) |
|
| 5 | 3 4 | sylan9eqr | |- ( ( ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( C ++ D ) prefix ( # ` A ) ) = C ) |
| 6 | 2 5 | eqeqan12d | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) ) -> ( ( ( A ++ B ) prefix ( # ` A ) ) = ( ( C ++ D ) prefix ( # ` A ) ) <-> A = C ) ) |
| 7 | 1 6 | imbitrid | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) ) -> ( ( A ++ B ) = ( C ++ D ) -> A = C ) ) |
| 8 | 7 | 3impb | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) -> A = C ) ) |
| 9 | simpr | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( A ++ B ) = ( C ++ D ) ) |
|
| 10 | simpl3 | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( # ` A ) = ( # ` C ) ) |
|
| 11 | 9 | fveq2d | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) ) |
| 12 | simpl1 | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( A e. Word X /\ B e. Word X ) ) |
|
| 13 | ccatlen | |- ( ( A e. Word X /\ B e. Word X ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 15 | simpl2 | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( C e. Word X /\ D e. Word X ) ) |
|
| 16 | ccatlen | |- ( ( C e. Word X /\ D e. Word X ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
| 18 | 11 14 17 | 3eqtr3d | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( ( # ` A ) + ( # ` B ) ) = ( ( # ` C ) + ( # ` D ) ) ) |
| 19 | 10 18 | opeq12d | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> <. ( # ` A ) , ( ( # ` A ) + ( # ` B ) ) >. = <. ( # ` C ) , ( ( # ` C ) + ( # ` D ) ) >. ) |
| 20 | 9 19 | oveq12d | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( ( A ++ B ) substr <. ( # ` A ) , ( ( # ` A ) + ( # ` B ) ) >. ) = ( ( C ++ D ) substr <. ( # ` C ) , ( ( # ` C ) + ( # ` D ) ) >. ) ) |
| 21 | swrdccat2 | |- ( ( A e. Word X /\ B e. Word X ) -> ( ( A ++ B ) substr <. ( # ` A ) , ( ( # ` A ) + ( # ` B ) ) >. ) = B ) |
|
| 22 | 12 21 | syl | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( ( A ++ B ) substr <. ( # ` A ) , ( ( # ` A ) + ( # ` B ) ) >. ) = B ) |
| 23 | swrdccat2 | |- ( ( C e. Word X /\ D e. Word X ) -> ( ( C ++ D ) substr <. ( # ` C ) , ( ( # ` C ) + ( # ` D ) ) >. ) = D ) |
|
| 24 | 15 23 | syl | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> ( ( C ++ D ) substr <. ( # ` C ) , ( ( # ` C ) + ( # ` D ) ) >. ) = D ) |
| 25 | 20 22 24 | 3eqtr3d | |- ( ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) /\ ( A ++ B ) = ( C ++ D ) ) -> B = D ) |
| 26 | 25 | ex | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) -> B = D ) ) |
| 27 | 8 26 | jcad | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) |
| 28 | oveq12 | |- ( ( A = C /\ B = D ) -> ( A ++ B ) = ( C ++ D ) ) |
|
| 29 | 27 28 | impbid1 | |- ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |