This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word is a prefix of itself. (Contributed by Stefan O'Rear, 16-Aug-2015) (Revised by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxid | |- ( S e. Word A -> ( S prefix ( # ` S ) ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | |- ( S e. Word A -> ( # ` S ) e. NN0 ) |
|
| 2 | nn0fz0 | |- ( ( # ` S ) e. NN0 <-> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
|
| 3 | 1 2 | sylib | |- ( S e. Word A -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
| 4 | pfxf | |- ( ( S e. Word A /\ ( # ` S ) e. ( 0 ... ( # ` S ) ) ) -> ( S prefix ( # ` S ) ) : ( 0 ..^ ( # ` S ) ) --> A ) |
|
| 5 | 3 4 | mpdan | |- ( S e. Word A -> ( S prefix ( # ` S ) ) : ( 0 ..^ ( # ` S ) ) --> A ) |
| 6 | 5 | ffnd | |- ( S e. Word A -> ( S prefix ( # ` S ) ) Fn ( 0 ..^ ( # ` S ) ) ) |
| 7 | wrdfn | |- ( S e. Word A -> S Fn ( 0 ..^ ( # ` S ) ) ) |
|
| 8 | simpl | |- ( ( S e. Word A /\ x e. ( 0 ..^ ( # ` S ) ) ) -> S e. Word A ) |
|
| 9 | 3 | adantr | |- ( ( S e. Word A /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
| 10 | simpr | |- ( ( S e. Word A /\ x e. ( 0 ..^ ( # ` S ) ) ) -> x e. ( 0 ..^ ( # ` S ) ) ) |
|
| 11 | pfxfv | |- ( ( S e. Word A /\ ( # ` S ) e. ( 0 ... ( # ` S ) ) /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S prefix ( # ` S ) ) ` x ) = ( S ` x ) ) |
|
| 12 | 8 9 10 11 | syl3anc | |- ( ( S e. Word A /\ x e. ( 0 ..^ ( # ` S ) ) ) -> ( ( S prefix ( # ` S ) ) ` x ) = ( S ` x ) ) |
| 13 | 6 7 12 | eqfnfvd | |- ( S e. Word A -> ( S prefix ( # ` S ) ) = S ) |