This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Mean Value Theorem. If F is a real continuous function on [ A , B ] which is differentiable on ( A , B ) , then there is some x e. ( A , B ) such that ( RR _D F )x is equal to the average slope over [ A , B ] . This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014) (Proof shortened by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvth.a | |- ( ph -> A e. RR ) |
|
| mvth.b | |- ( ph -> B e. RR ) |
||
| mvth.lt | |- ( ph -> A < B ) |
||
| mvth.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| mvth.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| Assertion | mvth | |- ( ph -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvth.a | |- ( ph -> A e. RR ) |
|
| 2 | mvth.b | |- ( ph -> B e. RR ) |
|
| 3 | mvth.lt | |- ( ph -> A < B ) |
|
| 4 | mvth.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | mvth.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 6 | mptresid | |- ( _I |` ( A [,] B ) ) = ( z e. ( A [,] B ) |-> z ) |
|
| 7 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 8 | 1 2 7 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 9 | ax-resscn | |- RR C_ CC |
|
| 10 | cncfmptid | |- ( ( ( A [,] B ) C_ RR /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> z ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 11 | 8 9 10 | sylancl | |- ( ph -> ( z e. ( A [,] B ) |-> z ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 12 | 6 11 | eqeltrid | |- ( ph -> ( _I |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 13 | 6 | eqcomi | |- ( z e. ( A [,] B ) |-> z ) = ( _I |` ( A [,] B ) ) |
| 14 | 13 | oveq2i | |- ( RR _D ( z e. ( A [,] B ) |-> z ) ) = ( RR _D ( _I |` ( A [,] B ) ) ) |
| 15 | reelprrecn | |- RR e. { RR , CC } |
|
| 16 | 15 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 17 | simpr | |- ( ( ph /\ z e. RR ) -> z e. RR ) |
|
| 18 | 17 | recnd | |- ( ( ph /\ z e. RR ) -> z e. CC ) |
| 19 | 1red | |- ( ( ph /\ z e. RR ) -> 1 e. RR ) |
|
| 20 | 16 | dvmptid | |- ( ph -> ( RR _D ( z e. RR |-> z ) ) = ( z e. RR |-> 1 ) ) |
| 21 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 22 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 23 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 24 | 1 2 23 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 25 | 16 18 19 20 8 21 22 24 | dvmptres2 | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> z ) ) = ( z e. ( A (,) B ) |-> 1 ) ) |
| 26 | 14 25 | eqtr3id | |- ( ph -> ( RR _D ( _I |` ( A [,] B ) ) ) = ( z e. ( A (,) B ) |-> 1 ) ) |
| 27 | 26 | dmeqd | |- ( ph -> dom ( RR _D ( _I |` ( A [,] B ) ) ) = dom ( z e. ( A (,) B ) |-> 1 ) ) |
| 28 | 1ex | |- 1 e. _V |
|
| 29 | eqid | |- ( z e. ( A (,) B ) |-> 1 ) = ( z e. ( A (,) B ) |-> 1 ) |
|
| 30 | 28 29 | dmmpti | |- dom ( z e. ( A (,) B ) |-> 1 ) = ( A (,) B ) |
| 31 | 27 30 | eqtrdi | |- ( ph -> dom ( RR _D ( _I |` ( A [,] B ) ) ) = ( A (,) B ) ) |
| 32 | 1 2 3 4 12 5 31 | cmvth | |- ( ph -> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |
| 33 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 34 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 35 | 1 2 3 | ltled | |- ( ph -> A <_ B ) |
| 36 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 37 | 33 34 35 36 | syl3anc | |- ( ph -> B e. ( A [,] B ) ) |
| 38 | fvresi | |- ( B e. ( A [,] B ) -> ( ( _I |` ( A [,] B ) ) ` B ) = B ) |
|
| 39 | 37 38 | syl | |- ( ph -> ( ( _I |` ( A [,] B ) ) ` B ) = B ) |
| 40 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 41 | 33 34 35 40 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 42 | fvresi | |- ( A e. ( A [,] B ) -> ( ( _I |` ( A [,] B ) ) ` A ) = A ) |
|
| 43 | 41 42 | syl | |- ( ph -> ( ( _I |` ( A [,] B ) ) ` A ) = A ) |
| 44 | 39 43 | oveq12d | |- ( ph -> ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) = ( B - A ) ) |
| 45 | 44 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) = ( B - A ) ) |
| 46 | 45 | oveq1d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) = ( ( B - A ) x. ( ( RR _D F ) ` x ) ) ) |
| 47 | 26 | fveq1d | |- ( ph -> ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) = ( ( z e. ( A (,) B ) |-> 1 ) ` x ) ) |
| 48 | eqidd | |- ( z = x -> 1 = 1 ) |
|
| 49 | 48 29 28 | fvmpt3i | |- ( x e. ( A (,) B ) -> ( ( z e. ( A (,) B ) |-> 1 ) ` x ) = 1 ) |
| 50 | 47 49 | sylan9eq | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) = 1 ) |
| 51 | 50 | oveq2d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. 1 ) ) |
| 52 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 53 | 4 52 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 54 | 53 37 | ffvelcdmd | |- ( ph -> ( F ` B ) e. RR ) |
| 55 | 53 41 | ffvelcdmd | |- ( ph -> ( F ` A ) e. RR ) |
| 56 | 54 55 | resubcld | |- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
| 57 | 56 | recnd | |- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 58 | 57 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 59 | 58 | mulridd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. 1 ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 60 | 51 59 | eqtrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 61 | 46 60 | eqeq12d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) <-> ( ( B - A ) x. ( ( RR _D F ) ` x ) ) = ( ( F ` B ) - ( F ` A ) ) ) ) |
| 62 | 2 1 | resubcld | |- ( ph -> ( B - A ) e. RR ) |
| 63 | 62 | recnd | |- ( ph -> ( B - A ) e. CC ) |
| 64 | 63 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( B - A ) e. CC ) |
| 65 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 66 | 5 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 67 | 65 66 | mpbii | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 68 | 67 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 69 | 1 2 | posdifd | |- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 70 | 3 69 | mpbid | |- ( ph -> 0 < ( B - A ) ) |
| 71 | 70 | gt0ne0d | |- ( ph -> ( B - A ) =/= 0 ) |
| 72 | 71 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( B - A ) =/= 0 ) |
| 73 | 58 64 68 72 | divmuld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) = ( ( RR _D F ) ` x ) <-> ( ( B - A ) x. ( ( RR _D F ) ` x ) ) = ( ( F ` B ) - ( F ` A ) ) ) ) |
| 74 | 61 73 | bitr4d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) <-> ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) = ( ( RR _D F ) ` x ) ) ) |
| 75 | eqcom | |- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) <-> ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) ) |
|
| 76 | eqcom | |- ( ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) <-> ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) = ( ( RR _D F ) ` x ) ) |
|
| 77 | 74 75 76 | 3bitr4g | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) <-> ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) ) ) |
| 78 | 77 | rexbidva | |- ( ph -> ( E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) <-> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) ) ) |
| 79 | 32 78 | mpbid | |- ( ph -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) ) |