This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | divccncf.1 | |- F = ( x e. CC |-> ( x / A ) ) |
|
| Assertion | divccncf | |- ( ( A e. CC /\ A =/= 0 ) -> F e. ( CC -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divccncf.1 | |- F = ( x e. CC |-> ( x / A ) ) |
|
| 2 | divrec2 | |- ( ( x e. CC /\ A e. CC /\ A =/= 0 ) -> ( x / A ) = ( ( 1 / A ) x. x ) ) |
|
| 3 | 2 | 3expb | |- ( ( x e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( x / A ) = ( ( 1 / A ) x. x ) ) |
| 4 | 3 | ancoms | |- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. CC ) -> ( x / A ) = ( ( 1 / A ) x. x ) ) |
| 5 | 4 | mpteq2dva | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( x / A ) ) = ( x e. CC |-> ( ( 1 / A ) x. x ) ) ) |
| 6 | 1 5 | eqtrid | |- ( ( A e. CC /\ A =/= 0 ) -> F = ( x e. CC |-> ( ( 1 / A ) x. x ) ) ) |
| 7 | reccl | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
|
| 8 | eqid | |- ( x e. CC |-> ( ( 1 / A ) x. x ) ) = ( x e. CC |-> ( ( 1 / A ) x. x ) ) |
|
| 9 | 8 | mulc1cncf | |- ( ( 1 / A ) e. CC -> ( x e. CC |-> ( ( 1 / A ) x. x ) ) e. ( CC -cn-> CC ) ) |
| 10 | 7 9 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( x e. CC |-> ( ( 1 / A ) x. x ) ) e. ( CC -cn-> CC ) ) |
| 11 | 6 10 | eqeltrd | |- ( ( A e. CC /\ A =/= 0 ) -> F e. ( CC -cn-> CC ) ) |