This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccss2 | |- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 2 | 1 | elixx3g | |- ( C e. ( A [,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ C /\ C <_ B ) ) ) |
| 3 | 2 | simplbi | |- ( C e. ( A [,] B ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
| 4 | 3 | adantr | |- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
| 5 | 4 | simp1d | |- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> A e. RR* ) |
| 6 | 4 | simp2d | |- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> B e. RR* ) |
| 7 | 2 | simprbi | |- ( C e. ( A [,] B ) -> ( A <_ C /\ C <_ B ) ) |
| 8 | 7 | adantr | |- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> ( A <_ C /\ C <_ B ) ) |
| 9 | 8 | simpld | |- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> A <_ C ) |
| 10 | 1 | elixx3g | |- ( D e. ( A [,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ D e. RR* ) /\ ( A <_ D /\ D <_ B ) ) ) |
| 11 | 10 | simprbi | |- ( D e. ( A [,] B ) -> ( A <_ D /\ D <_ B ) ) |
| 12 | 11 | simprd | |- ( D e. ( A [,] B ) -> D <_ B ) |
| 13 | 12 | adantl | |- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> D <_ B ) |
| 14 | xrletr | |- ( ( A e. RR* /\ C e. RR* /\ w e. RR* ) -> ( ( A <_ C /\ C <_ w ) -> A <_ w ) ) |
|
| 15 | xrletr | |- ( ( w e. RR* /\ D e. RR* /\ B e. RR* ) -> ( ( w <_ D /\ D <_ B ) -> w <_ B ) ) |
|
| 16 | 1 1 14 15 | ixxss12 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D <_ B ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
| 17 | 5 6 9 13 16 | syl22anc | |- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |