This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, real part. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptcj.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| dvmptcj.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptcj.da | |- ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| Assertion | dvmptre | |- ( ph -> ( RR _D ( x e. X |-> ( Re ` A ) ) ) = ( x e. X |-> ( Re ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptcj.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 2 | dvmptcj.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 3 | dvmptcj.da | |- ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 4 | reelprrecn | |- RR e. { RR , CC } |
|
| 5 | 4 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 6 | 1 | cjcld | |- ( ( ph /\ x e. X ) -> ( * ` A ) e. CC ) |
| 7 | 1 6 | addcld | |- ( ( ph /\ x e. X ) -> ( A + ( * ` A ) ) e. CC ) |
| 8 | 5 1 2 3 | dvmptcl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 9 | 8 | cjcld | |- ( ( ph /\ x e. X ) -> ( * ` B ) e. CC ) |
| 10 | 8 9 | addcld | |- ( ( ph /\ x e. X ) -> ( B + ( * ` B ) ) e. CC ) |
| 11 | 1 2 3 | dvmptcj | |- ( ph -> ( RR _D ( x e. X |-> ( * ` A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |
| 12 | 5 1 2 3 6 9 11 | dvmptadd | |- ( ph -> ( RR _D ( x e. X |-> ( A + ( * ` A ) ) ) ) = ( x e. X |-> ( B + ( * ` B ) ) ) ) |
| 13 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 14 | 13 | a1i | |- ( ph -> ( 1 / 2 ) e. CC ) |
| 15 | 5 7 10 12 14 | dvmptcmul | |- ( ph -> ( RR _D ( x e. X |-> ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) ) = ( x e. X |-> ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) ) |
| 16 | reval | |- ( A e. CC -> ( Re ` A ) = ( ( A + ( * ` A ) ) / 2 ) ) |
|
| 17 | 1 16 | syl | |- ( ( ph /\ x e. X ) -> ( Re ` A ) = ( ( A + ( * ` A ) ) / 2 ) ) |
| 18 | 2cn | |- 2 e. CC |
|
| 19 | 2ne0 | |- 2 =/= 0 |
|
| 20 | divrec2 | |- ( ( ( A + ( * ` A ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( A + ( * ` A ) ) / 2 ) = ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) |
|
| 21 | 18 19 20 | mp3an23 | |- ( ( A + ( * ` A ) ) e. CC -> ( ( A + ( * ` A ) ) / 2 ) = ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) |
| 22 | 7 21 | syl | |- ( ( ph /\ x e. X ) -> ( ( A + ( * ` A ) ) / 2 ) = ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) |
| 23 | 17 22 | eqtrd | |- ( ( ph /\ x e. X ) -> ( Re ` A ) = ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) |
| 24 | 23 | mpteq2dva | |- ( ph -> ( x e. X |-> ( Re ` A ) ) = ( x e. X |-> ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) ) |
| 25 | 24 | oveq2d | |- ( ph -> ( RR _D ( x e. X |-> ( Re ` A ) ) ) = ( RR _D ( x e. X |-> ( ( 1 / 2 ) x. ( A + ( * ` A ) ) ) ) ) ) |
| 26 | reval | |- ( B e. CC -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
|
| 27 | 8 26 | syl | |- ( ( ph /\ x e. X ) -> ( Re ` B ) = ( ( B + ( * ` B ) ) / 2 ) ) |
| 28 | divrec2 | |- ( ( ( B + ( * ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) |
|
| 29 | 18 19 28 | mp3an23 | |- ( ( B + ( * ` B ) ) e. CC -> ( ( B + ( * ` B ) ) / 2 ) = ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) |
| 30 | 10 29 | syl | |- ( ( ph /\ x e. X ) -> ( ( B + ( * ` B ) ) / 2 ) = ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) |
| 31 | 27 30 | eqtrd | |- ( ( ph /\ x e. X ) -> ( Re ` B ) = ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) |
| 32 | 31 | mpteq2dva | |- ( ph -> ( x e. X |-> ( Re ` B ) ) = ( x e. X |-> ( ( 1 / 2 ) x. ( B + ( * ` B ) ) ) ) ) |
| 33 | 15 25 32 | 3eqtr4d | |- ( ph -> ( RR _D ( x e. X |-> ( Re ` A ) ) ) = ( x e. X |-> ( Re ` B ) ) ) |