This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | ntrss | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( int ` J ) ` T ) C_ ( ( int ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | sscon | |- ( T C_ S -> ( X \ S ) C_ ( X \ T ) ) |
|
| 3 | 2 | adantl | |- ( ( S C_ X /\ T C_ S ) -> ( X \ S ) C_ ( X \ T ) ) |
| 4 | difss | |- ( X \ T ) C_ X |
|
| 5 | 3 4 | jctil | |- ( ( S C_ X /\ T C_ S ) -> ( ( X \ T ) C_ X /\ ( X \ S ) C_ ( X \ T ) ) ) |
| 6 | 1 | clsss | |- ( ( J e. Top /\ ( X \ T ) C_ X /\ ( X \ S ) C_ ( X \ T ) ) -> ( ( cls ` J ) ` ( X \ S ) ) C_ ( ( cls ` J ) ` ( X \ T ) ) ) |
| 7 | 6 | 3expb | |- ( ( J e. Top /\ ( ( X \ T ) C_ X /\ ( X \ S ) C_ ( X \ T ) ) ) -> ( ( cls ` J ) ` ( X \ S ) ) C_ ( ( cls ` J ) ` ( X \ T ) ) ) |
| 8 | 5 7 | sylan2 | |- ( ( J e. Top /\ ( S C_ X /\ T C_ S ) ) -> ( ( cls ` J ) ` ( X \ S ) ) C_ ( ( cls ` J ) ` ( X \ T ) ) ) |
| 9 | 8 | sscond | |- ( ( J e. Top /\ ( S C_ X /\ T C_ S ) ) -> ( X \ ( ( cls ` J ) ` ( X \ T ) ) ) C_ ( X \ ( ( cls ` J ) ` ( X \ S ) ) ) ) |
| 10 | sstr2 | |- ( T C_ S -> ( S C_ X -> T C_ X ) ) |
|
| 11 | 10 | impcom | |- ( ( S C_ X /\ T C_ S ) -> T C_ X ) |
| 12 | 1 | ntrval2 | |- ( ( J e. Top /\ T C_ X ) -> ( ( int ` J ) ` T ) = ( X \ ( ( cls ` J ) ` ( X \ T ) ) ) ) |
| 13 | 11 12 | sylan2 | |- ( ( J e. Top /\ ( S C_ X /\ T C_ S ) ) -> ( ( int ` J ) ` T ) = ( X \ ( ( cls ` J ) ` ( X \ T ) ) ) ) |
| 14 | 1 | ntrval2 | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = ( X \ ( ( cls ` J ) ` ( X \ S ) ) ) ) |
| 15 | 14 | adantrr | |- ( ( J e. Top /\ ( S C_ X /\ T C_ S ) ) -> ( ( int ` J ) ` S ) = ( X \ ( ( cls ` J ) ` ( X \ S ) ) ) ) |
| 16 | 9 13 15 | 3sstr4d | |- ( ( J e. Top /\ ( S C_ X /\ T C_ S ) ) -> ( ( int ` J ) ` T ) C_ ( ( int ` J ) ` S ) ) |
| 17 | 16 | 3impb | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( int ` J ) ` T ) C_ ( ( int ` J ) ` S ) ) |