This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval in RR is compact. (Contributed by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccmp.1 | |- J = ( topGen ` ran (,) ) |
|
| icccmp.2 | |- T = ( J |`t ( A [,] B ) ) |
||
| Assertion | icccmp | |- ( ( A e. RR /\ B e. RR ) -> T e. Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.1 | |- J = ( topGen ` ran (,) ) |
|
| 2 | icccmp.2 | |- T = ( J |`t ( A [,] B ) ) |
|
| 3 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 4 | eqid | |- { x e. ( A [,] B ) | E. z e. ( ~P u i^i Fin ) ( A [,] x ) C_ U. z } = { x e. ( A [,] B ) | E. z e. ( ~P u i^i Fin ) ( A [,] x ) C_ U. z } |
|
| 5 | simplll | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ ( u e. ~P J /\ ( A [,] B ) C_ U. u ) ) -> A e. RR ) |
|
| 6 | simpllr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ ( u e. ~P J /\ ( A [,] B ) C_ U. u ) ) -> B e. RR ) |
|
| 7 | simplr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ ( u e. ~P J /\ ( A [,] B ) C_ U. u ) ) -> A <_ B ) |
|
| 8 | elpwi | |- ( u e. ~P J -> u C_ J ) |
|
| 9 | 8 | ad2antrl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ ( u e. ~P J /\ ( A [,] B ) C_ U. u ) ) -> u C_ J ) |
| 10 | simprr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ ( u e. ~P J /\ ( A [,] B ) C_ U. u ) ) -> ( A [,] B ) C_ U. u ) |
|
| 11 | 1 2 3 4 5 6 7 9 10 | icccmplem3 | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ ( u e. ~P J /\ ( A [,] B ) C_ U. u ) ) -> B e. { x e. ( A [,] B ) | E. z e. ( ~P u i^i Fin ) ( A [,] x ) C_ U. z } ) |
| 12 | oveq2 | |- ( x = B -> ( A [,] x ) = ( A [,] B ) ) |
|
| 13 | 12 | sseq1d | |- ( x = B -> ( ( A [,] x ) C_ U. z <-> ( A [,] B ) C_ U. z ) ) |
| 14 | 13 | rexbidv | |- ( x = B -> ( E. z e. ( ~P u i^i Fin ) ( A [,] x ) C_ U. z <-> E. z e. ( ~P u i^i Fin ) ( A [,] B ) C_ U. z ) ) |
| 15 | 14 | elrab | |- ( B e. { x e. ( A [,] B ) | E. z e. ( ~P u i^i Fin ) ( A [,] x ) C_ U. z } <-> ( B e. ( A [,] B ) /\ E. z e. ( ~P u i^i Fin ) ( A [,] B ) C_ U. z ) ) |
| 16 | 15 | simprbi | |- ( B e. { x e. ( A [,] B ) | E. z e. ( ~P u i^i Fin ) ( A [,] x ) C_ U. z } -> E. z e. ( ~P u i^i Fin ) ( A [,] B ) C_ U. z ) |
| 17 | 11 16 | syl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ ( u e. ~P J /\ ( A [,] B ) C_ U. u ) ) -> E. z e. ( ~P u i^i Fin ) ( A [,] B ) C_ U. z ) |
| 18 | 17 | expr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ u e. ~P J ) -> ( ( A [,] B ) C_ U. u -> E. z e. ( ~P u i^i Fin ) ( A [,] B ) C_ U. z ) ) |
| 19 | 18 | ralrimiva | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> A. u e. ~P J ( ( A [,] B ) C_ U. u -> E. z e. ( ~P u i^i Fin ) ( A [,] B ) C_ U. z ) ) |
| 20 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 21 | 1 20 | eqeltri | |- J e. Top |
| 22 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 23 | 22 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( A [,] B ) C_ RR ) |
| 24 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 25 | 1 | unieqi | |- U. J = U. ( topGen ` ran (,) ) |
| 26 | 24 25 | eqtr4i | |- RR = U. J |
| 27 | 26 | cmpsub | |- ( ( J e. Top /\ ( A [,] B ) C_ RR ) -> ( ( J |`t ( A [,] B ) ) e. Comp <-> A. u e. ~P J ( ( A [,] B ) C_ U. u -> E. z e. ( ~P u i^i Fin ) ( A [,] B ) C_ U. z ) ) ) |
| 28 | 21 23 27 | sylancr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( ( J |`t ( A [,] B ) ) e. Comp <-> A. u e. ~P J ( ( A [,] B ) C_ U. u -> E. z e. ( ~P u i^i Fin ) ( A [,] B ) C_ U. z ) ) ) |
| 29 | 19 28 | mpbird | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( J |`t ( A [,] B ) ) e. Comp ) |
| 30 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 31 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 32 | icc0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
|
| 33 | 30 31 32 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 34 | 33 | biimpar | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( A [,] B ) = (/) ) |
| 35 | 34 | oveq2d | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( J |`t ( A [,] B ) ) = ( J |`t (/) ) ) |
| 36 | rest0 | |- ( J e. Top -> ( J |`t (/) ) = { (/) } ) |
|
| 37 | 21 36 | ax-mp | |- ( J |`t (/) ) = { (/) } |
| 38 | 35 37 | eqtrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( J |`t ( A [,] B ) ) = { (/) } ) |
| 39 | 0cmp | |- { (/) } e. Comp |
|
| 40 | 38 39 | eqeltrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( J |`t ( A [,] B ) ) e. Comp ) |
| 41 | lelttric | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B \/ B < A ) ) |
|
| 42 | 29 40 41 | mpjaodan | |- ( ( A e. RR /\ B e. RR ) -> ( J |`t ( A [,] B ) ) e. Comp ) |
| 43 | 2 42 | eqeltrid | |- ( ( A e. RR /\ B e. RR ) -> T e. Comp ) |