This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative rule for inverse functions. If F is a continuous and differentiable bijective function from X to Y which never has derivative 0 , then ` ``' F is also differentiable, and its derivative is the reciprocal of the derivative of F ` . (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnvre.f | |- ( ph -> F e. ( X -cn-> RR ) ) |
|
| dvcnvre.d | |- ( ph -> dom ( RR _D F ) = X ) |
||
| dvcnvre.z | |- ( ph -> -. 0 e. ran ( RR _D F ) ) |
||
| dvcnvre.1 | |- ( ph -> F : X -1-1-onto-> Y ) |
||
| Assertion | dvcnvre | |- ( ph -> ( RR _D `' F ) = ( x e. Y |-> ( 1 / ( ( RR _D F ) ` ( `' F ` x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnvre.f | |- ( ph -> F e. ( X -cn-> RR ) ) |
|
| 2 | dvcnvre.d | |- ( ph -> dom ( RR _D F ) = X ) |
|
| 3 | dvcnvre.z | |- ( ph -> -. 0 e. ran ( RR _D F ) ) |
|
| 4 | dvcnvre.1 | |- ( ph -> F : X -1-1-onto-> Y ) |
|
| 5 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 6 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 7 | reelprrecn | |- RR e. { RR , CC } |
|
| 8 | 7 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 9 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 10 | f1ofo | |- ( F : X -1-1-onto-> Y -> F : X -onto-> Y ) |
|
| 11 | forn | |- ( F : X -onto-> Y -> ran F = Y ) |
|
| 12 | 4 10 11 | 3syl | |- ( ph -> ran F = Y ) |
| 13 | cncff | |- ( F e. ( X -cn-> RR ) -> F : X --> RR ) |
|
| 14 | frn | |- ( F : X --> RR -> ran F C_ RR ) |
|
| 15 | 1 13 14 | 3syl | |- ( ph -> ran F C_ RR ) |
| 16 | 12 15 | eqsstrrd | |- ( ph -> Y C_ RR ) |
| 17 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 18 | 17 | ntrss2 | |- ( ( ( topGen ` ran (,) ) e. Top /\ Y C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) C_ Y ) |
| 19 | 9 16 18 | sylancr | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) C_ Y ) |
| 20 | f1ocnvfv2 | |- ( ( F : X -1-1-onto-> Y /\ x e. Y ) -> ( F ` ( `' F ` x ) ) = x ) |
|
| 21 | 4 20 | sylan | |- ( ( ph /\ x e. Y ) -> ( F ` ( `' F ` x ) ) = x ) |
| 22 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 23 | 22 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 24 | dvbsss | |- dom ( RR _D F ) C_ RR |
|
| 25 | 24 | a1i | |- ( ph -> dom ( RR _D F ) C_ RR ) |
| 26 | 2 25 | eqsstrrd | |- ( ph -> X C_ RR ) |
| 27 | 17 | ntrss2 | |- ( ( ( topGen ` ran (,) ) e. Top /\ X C_ RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` X ) C_ X ) |
| 28 | 9 26 27 | sylancr | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` X ) C_ X ) |
| 29 | ax-resscn | |- RR C_ CC |
|
| 30 | 29 | a1i | |- ( ph -> RR C_ CC ) |
| 31 | 1 13 | syl | |- ( ph -> F : X --> RR ) |
| 32 | fss | |- ( ( F : X --> RR /\ RR C_ CC ) -> F : X --> CC ) |
|
| 33 | 31 29 32 | sylancl | |- ( ph -> F : X --> CC ) |
| 34 | 30 33 26 6 5 | dvbssntr | |- ( ph -> dom ( RR _D F ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
| 35 | 2 34 | eqsstrrd | |- ( ph -> X C_ ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
| 36 | 28 35 | eqssd | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` X ) = X ) |
| 37 | 17 | isopn3 | |- ( ( ( topGen ` ran (,) ) e. Top /\ X C_ RR ) -> ( X e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` X ) = X ) ) |
| 38 | 9 26 37 | sylancr | |- ( ph -> ( X e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` X ) = X ) ) |
| 39 | 36 38 | mpbird | |- ( ph -> X e. ( topGen ` ran (,) ) ) |
| 40 | f1ocnv | |- ( F : X -1-1-onto-> Y -> `' F : Y -1-1-onto-> X ) |
|
| 41 | f1of | |- ( `' F : Y -1-1-onto-> X -> `' F : Y --> X ) |
|
| 42 | 4 40 41 | 3syl | |- ( ph -> `' F : Y --> X ) |
| 43 | 42 | ffvelcdmda | |- ( ( ph /\ x e. Y ) -> ( `' F ` x ) e. X ) |
| 44 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 45 | 22 44 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 46 | 45 | mopni2 | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ X e. ( topGen ` ran (,) ) /\ ( `' F ` x ) e. X ) -> E. r e. RR+ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) |
| 47 | 23 39 43 46 | mp3an2ani | |- ( ( ph /\ x e. Y ) -> E. r e. RR+ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) |
| 48 | 1 | ad2antrr | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> F e. ( X -cn-> RR ) ) |
| 49 | 2 | ad2antrr | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> dom ( RR _D F ) = X ) |
| 50 | 3 | ad2antrr | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> -. 0 e. ran ( RR _D F ) ) |
| 51 | 4 | ad2antrr | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> F : X -1-1-onto-> Y ) |
| 52 | 43 | adantr | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( `' F ` x ) e. X ) |
| 53 | rphalfcl | |- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
|
| 54 | 53 | ad2antrl | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( r / 2 ) e. RR+ ) |
| 55 | 26 | ad2antrr | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> X C_ RR ) |
| 56 | 55 52 | sseldd | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( `' F ` x ) e. RR ) |
| 57 | 54 | rpred | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( r / 2 ) e. RR ) |
| 58 | 56 57 | resubcld | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( `' F ` x ) - ( r / 2 ) ) e. RR ) |
| 59 | 56 57 | readdcld | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( `' F ` x ) + ( r / 2 ) ) e. RR ) |
| 60 | elicc2 | |- ( ( ( ( `' F ` x ) - ( r / 2 ) ) e. RR /\ ( ( `' F ` x ) + ( r / 2 ) ) e. RR ) -> ( y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) <-> ( y e. RR /\ ( ( `' F ` x ) - ( r / 2 ) ) <_ y /\ y <_ ( ( `' F ` x ) + ( r / 2 ) ) ) ) ) |
|
| 61 | 58 59 60 | syl2anc | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) <-> ( y e. RR /\ ( ( `' F ` x ) - ( r / 2 ) ) <_ y /\ y <_ ( ( `' F ` x ) + ( r / 2 ) ) ) ) ) |
| 62 | 61 | biimpa | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( y e. RR /\ ( ( `' F ` x ) - ( r / 2 ) ) <_ y /\ y <_ ( ( `' F ` x ) + ( r / 2 ) ) ) ) |
| 63 | 62 | simp1d | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> y e. RR ) |
| 64 | 56 | adantr | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( `' F ` x ) e. RR ) |
| 65 | simplrl | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> r e. RR+ ) |
|
| 66 | 65 | rpred | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> r e. RR ) |
| 67 | 64 66 | resubcld | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - r ) e. RR ) |
| 68 | 58 | adantr | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - ( r / 2 ) ) e. RR ) |
| 69 | 65 53 | syl | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( r / 2 ) e. RR+ ) |
| 70 | 69 | rpred | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( r / 2 ) e. RR ) |
| 71 | rphalflt | |- ( r e. RR+ -> ( r / 2 ) < r ) |
|
| 72 | 65 71 | syl | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( r / 2 ) < r ) |
| 73 | 70 66 64 72 | ltsub2dd | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - r ) < ( ( `' F ` x ) - ( r / 2 ) ) ) |
| 74 | 62 | simp2d | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - ( r / 2 ) ) <_ y ) |
| 75 | 67 68 63 73 74 | ltletrd | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - r ) < y ) |
| 76 | 59 | adantr | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) + ( r / 2 ) ) e. RR ) |
| 77 | 64 66 | readdcld | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) + r ) e. RR ) |
| 78 | 62 | simp3d | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> y <_ ( ( `' F ` x ) + ( r / 2 ) ) ) |
| 79 | 70 66 64 72 | ltadd2dd | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) + ( r / 2 ) ) < ( ( `' F ` x ) + r ) ) |
| 80 | 63 76 77 78 79 | lelttrd | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> y < ( ( `' F ` x ) + r ) ) |
| 81 | 67 | rexrd | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) - r ) e. RR* ) |
| 82 | 77 | rexrd | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( ( `' F ` x ) + r ) e. RR* ) |
| 83 | elioo2 | |- ( ( ( ( `' F ` x ) - r ) e. RR* /\ ( ( `' F ` x ) + r ) e. RR* ) -> ( y e. ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) <-> ( y e. RR /\ ( ( `' F ` x ) - r ) < y /\ y < ( ( `' F ` x ) + r ) ) ) ) |
|
| 84 | 81 82 83 | syl2anc | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> ( y e. ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) <-> ( y e. RR /\ ( ( `' F ` x ) - r ) < y /\ y < ( ( `' F ` x ) + r ) ) ) ) |
| 85 | 63 75 80 84 | mpbir3and | |- ( ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) /\ y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) ) -> y e. ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) |
| 86 | 85 | ex | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( y e. ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) -> y e. ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) ) |
| 87 | 86 | ssrdv | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) C_ ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) |
| 88 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 89 | 88 | ad2antrl | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> r e. RR ) |
| 90 | 22 | bl2ioo | |- ( ( ( `' F ` x ) e. RR /\ r e. RR ) -> ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) |
| 91 | 56 89 90 | syl2anc | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( `' F ` x ) - r ) (,) ( ( `' F ` x ) + r ) ) ) |
| 92 | 87 91 | sseqtrrd | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) C_ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) ) |
| 93 | simprr | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) |
|
| 94 | 92 93 | sstrd | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( ( `' F ` x ) - ( r / 2 ) ) [,] ( ( `' F ` x ) + ( r / 2 ) ) ) C_ X ) |
| 95 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 96 | eqid | |- ( ( TopOpen ` CCfld ) |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
|
| 97 | eqid | |- ( ( TopOpen ` CCfld ) |`t Y ) = ( ( TopOpen ` CCfld ) |`t Y ) |
|
| 98 | 48 49 50 51 52 54 94 95 5 96 97 | dvcnvrelem2 | |- ( ( ( ph /\ x e. Y ) /\ ( r e. RR+ /\ ( ( `' F ` x ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ X ) ) -> ( ( F ` ( `' F ` x ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` Y ) /\ `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` ( F ` ( `' F ` x ) ) ) ) ) |
| 99 | 47 98 | rexlimddv | |- ( ( ph /\ x e. Y ) -> ( ( F ` ( `' F ` x ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` Y ) /\ `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` ( F ` ( `' F ` x ) ) ) ) ) |
| 100 | 99 | simpld | |- ( ( ph /\ x e. Y ) -> ( F ` ( `' F ` x ) ) e. ( ( int ` ( topGen ` ran (,) ) ) ` Y ) ) |
| 101 | 21 100 | eqeltrrd | |- ( ( ph /\ x e. Y ) -> x e. ( ( int ` ( topGen ` ran (,) ) ) ` Y ) ) |
| 102 | 19 101 | eqelssd | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) = Y ) |
| 103 | 17 | isopn3 | |- ( ( ( topGen ` ran (,) ) e. Top /\ Y C_ RR ) -> ( Y e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) = Y ) ) |
| 104 | 9 16 103 | sylancr | |- ( ph -> ( Y e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` Y ) = Y ) ) |
| 105 | 102 104 | mpbird | |- ( ph -> Y e. ( topGen ` ran (,) ) ) |
| 106 | 99 | simprd | |- ( ( ph /\ x e. Y ) -> `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` ( F ` ( `' F ` x ) ) ) ) |
| 107 | 21 | fveq2d | |- ( ( ph /\ x e. Y ) -> ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` ( F ` ( `' F ` x ) ) ) = ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) |
| 108 | 106 107 | eleqtrd | |- ( ( ph /\ x e. Y ) -> `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) |
| 109 | 108 | ralrimiva | |- ( ph -> A. x e. Y `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) |
| 110 | 5 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 111 | 16 29 | sstrdi | |- ( ph -> Y C_ CC ) |
| 112 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ Y C_ CC ) -> ( ( TopOpen ` CCfld ) |`t Y ) e. ( TopOn ` Y ) ) |
|
| 113 | 110 111 112 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t Y ) e. ( TopOn ` Y ) ) |
| 114 | 26 29 | sstrdi | |- ( ph -> X C_ CC ) |
| 115 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ X C_ CC ) -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
|
| 116 | 110 114 115 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
| 117 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t Y ) e. ( TopOn ` Y ) /\ ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) -> ( `' F e. ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) <-> ( `' F : Y --> X /\ A. x e. Y `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) ) ) |
|
| 118 | 113 116 117 | syl2anc | |- ( ph -> ( `' F e. ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) <-> ( `' F : Y --> X /\ A. x e. Y `' F e. ( ( ( ( TopOpen ` CCfld ) |`t Y ) CnP ( ( TopOpen ` CCfld ) |`t X ) ) ` x ) ) ) ) |
| 119 | 42 109 118 | mpbir2and | |- ( ph -> `' F e. ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) ) |
| 120 | 5 97 96 | cncfcn | |- ( ( Y C_ CC /\ X C_ CC ) -> ( Y -cn-> X ) = ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) ) |
| 121 | 111 114 120 | syl2anc | |- ( ph -> ( Y -cn-> X ) = ( ( ( TopOpen ` CCfld ) |`t Y ) Cn ( ( TopOpen ` CCfld ) |`t X ) ) ) |
| 122 | 119 121 | eleqtrrd | |- ( ph -> `' F e. ( Y -cn-> X ) ) |
| 123 | 5 6 8 105 4 122 2 3 | dvcnv | |- ( ph -> ( RR _D `' F ) = ( x e. Y |-> ( 1 / ( ( RR _D F ) ` ( `' F ` x ) ) ) ) ) |