This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnvres | |- ( Fun `' F -> `' ( F |` A ) = ( `' F |` ( F " A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
| 2 | df-rn | |- ran ( F |` A ) = dom `' ( F |` A ) |
|
| 3 | 1 2 | eqtri | |- ( F " A ) = dom `' ( F |` A ) |
| 4 | 3 | reseq2i | |- ( `' F |` ( F " A ) ) = ( `' F |` dom `' ( F |` A ) ) |
| 5 | resss | |- ( F |` A ) C_ F |
|
| 6 | cnvss | |- ( ( F |` A ) C_ F -> `' ( F |` A ) C_ `' F ) |
|
| 7 | 5 6 | ax-mp | |- `' ( F |` A ) C_ `' F |
| 8 | funssres | |- ( ( Fun `' F /\ `' ( F |` A ) C_ `' F ) -> ( `' F |` dom `' ( F |` A ) ) = `' ( F |` A ) ) |
|
| 9 | 7 8 | mpan2 | |- ( Fun `' F -> ( `' F |` dom `' ( F |` A ) ) = `' ( F |` A ) ) |
| 10 | 4 9 | eqtr2id | |- ( Fun `' F -> `' ( F |` A ) = ( `' F |` ( F " A ) ) ) |