This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvbsss | |- dom ( S _D F ) C_ S |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dv | |- _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
|
| 2 | 1 | reldmmpo | |- Rel dom _D |
| 3 | df-rel | |- ( Rel dom _D <-> dom _D C_ ( _V X. _V ) ) |
|
| 4 | 2 3 | mpbi | |- dom _D C_ ( _V X. _V ) |
| 5 | 4 | sseli | |- ( <. S , F >. e. dom _D -> <. S , F >. e. ( _V X. _V ) ) |
| 6 | opelxp1 | |- ( <. S , F >. e. ( _V X. _V ) -> S e. _V ) |
|
| 7 | 5 6 | syl | |- ( <. S , F >. e. dom _D -> S e. _V ) |
| 8 | opeq1 | |- ( s = S -> <. s , F >. = <. S , F >. ) |
|
| 9 | 8 | eleq1d | |- ( s = S -> ( <. s , F >. e. dom _D <-> <. S , F >. e. dom _D ) ) |
| 10 | eleq1 | |- ( s = S -> ( s e. ~P CC <-> S e. ~P CC ) ) |
|
| 11 | oveq2 | |- ( s = S -> ( CC ^pm s ) = ( CC ^pm S ) ) |
|
| 12 | 11 | eleq2d | |- ( s = S -> ( F e. ( CC ^pm s ) <-> F e. ( CC ^pm S ) ) ) |
| 13 | 10 12 | anbi12d | |- ( s = S -> ( ( s e. ~P CC /\ F e. ( CC ^pm s ) ) <-> ( S e. ~P CC /\ F e. ( CC ^pm S ) ) ) ) |
| 14 | 9 13 | imbi12d | |- ( s = S -> ( ( <. s , F >. e. dom _D -> ( s e. ~P CC /\ F e. ( CC ^pm s ) ) ) <-> ( <. S , F >. e. dom _D -> ( S e. ~P CC /\ F e. ( CC ^pm S ) ) ) ) ) |
| 15 | 1 | dmmpossx | |- dom _D C_ U_ s e. ~P CC ( { s } X. ( CC ^pm s ) ) |
| 16 | 15 | sseli | |- ( <. s , F >. e. dom _D -> <. s , F >. e. U_ s e. ~P CC ( { s } X. ( CC ^pm s ) ) ) |
| 17 | opeliunxp | |- ( <. s , F >. e. U_ s e. ~P CC ( { s } X. ( CC ^pm s ) ) <-> ( s e. ~P CC /\ F e. ( CC ^pm s ) ) ) |
|
| 18 | 16 17 | sylib | |- ( <. s , F >. e. dom _D -> ( s e. ~P CC /\ F e. ( CC ^pm s ) ) ) |
| 19 | 14 18 | vtoclg | |- ( S e. _V -> ( <. S , F >. e. dom _D -> ( S e. ~P CC /\ F e. ( CC ^pm S ) ) ) ) |
| 20 | 7 19 | mpcom | |- ( <. S , F >. e. dom _D -> ( S e. ~P CC /\ F e. ( CC ^pm S ) ) ) |
| 21 | 20 | simpld | |- ( <. S , F >. e. dom _D -> S e. ~P CC ) |
| 22 | 21 | elpwid | |- ( <. S , F >. e. dom _D -> S C_ CC ) |
| 23 | 20 | simprd | |- ( <. S , F >. e. dom _D -> F e. ( CC ^pm S ) ) |
| 24 | cnex | |- CC e. _V |
|
| 25 | elpm2g | |- ( ( CC e. _V /\ S e. ~P CC ) -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
|
| 26 | 24 21 25 | sylancr | |- ( <. S , F >. e. dom _D -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
| 27 | 23 26 | mpbid | |- ( <. S , F >. e. dom _D -> ( F : dom F --> CC /\ dom F C_ S ) ) |
| 28 | 27 | simpld | |- ( <. S , F >. e. dom _D -> F : dom F --> CC ) |
| 29 | 27 | simprd | |- ( <. S , F >. e. dom _D -> dom F C_ S ) |
| 30 | 22 28 29 | dvbss | |- ( <. S , F >. e. dom _D -> dom ( S _D F ) C_ dom F ) |
| 31 | 30 29 | sstrd | |- ( <. S , F >. e. dom _D -> dom ( S _D F ) C_ S ) |
| 32 | df-ov | |- ( S _D F ) = ( _D ` <. S , F >. ) |
|
| 33 | ndmfv | |- ( -. <. S , F >. e. dom _D -> ( _D ` <. S , F >. ) = (/) ) |
|
| 34 | 32 33 | eqtrid | |- ( -. <. S , F >. e. dom _D -> ( S _D F ) = (/) ) |
| 35 | 34 | dmeqd | |- ( -. <. S , F >. e. dom _D -> dom ( S _D F ) = dom (/) ) |
| 36 | dm0 | |- dom (/) = (/) |
|
| 37 | 35 36 | eqtrdi | |- ( -. <. S , F >. e. dom _D -> dom ( S _D F ) = (/) ) |
| 38 | 0ss | |- (/) C_ S |
|
| 39 | 37 38 | eqsstrdi | |- ( -. <. S , F >. e. dom _D -> dom ( S _D F ) C_ S ) |
| 40 | 31 39 | pm2.61i | |- dom ( S _D F ) C_ S |