This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| eldprdi.1 | |- ( ph -> G dom DProd S ) |
||
| eldprdi.2 | |- ( ph -> dom S = I ) |
||
| dprdfid.3 | |- ( ph -> X e. I ) |
||
| dprdfid.4 | |- ( ph -> A e. ( S ` X ) ) |
||
| dprdfid.f | |- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
||
| Assertion | dprdfid | |- ( ph -> ( F e. W /\ ( G gsum F ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | eldprdi.1 | |- ( ph -> G dom DProd S ) |
|
| 4 | eldprdi.2 | |- ( ph -> dom S = I ) |
|
| 5 | dprdfid.3 | |- ( ph -> X e. I ) |
|
| 6 | dprdfid.4 | |- ( ph -> A e. ( S ` X ) ) |
|
| 7 | dprdfid.f | |- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
|
| 8 | 6 | ad2antrr | |- ( ( ( ph /\ n e. I ) /\ n = X ) -> A e. ( S ` X ) ) |
| 9 | simpr | |- ( ( ( ph /\ n e. I ) /\ n = X ) -> n = X ) |
|
| 10 | 9 | fveq2d | |- ( ( ( ph /\ n e. I ) /\ n = X ) -> ( S ` n ) = ( S ` X ) ) |
| 11 | 8 10 | eleqtrrd | |- ( ( ( ph /\ n e. I ) /\ n = X ) -> A e. ( S ` n ) ) |
| 12 | 3 4 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 13 | 12 | ffvelcdmda | |- ( ( ph /\ n e. I ) -> ( S ` n ) e. ( SubGrp ` G ) ) |
| 14 | 1 | subg0cl | |- ( ( S ` n ) e. ( SubGrp ` G ) -> .0. e. ( S ` n ) ) |
| 15 | 13 14 | syl | |- ( ( ph /\ n e. I ) -> .0. e. ( S ` n ) ) |
| 16 | 15 | adantr | |- ( ( ( ph /\ n e. I ) /\ -. n = X ) -> .0. e. ( S ` n ) ) |
| 17 | 11 16 | ifclda | |- ( ( ph /\ n e. I ) -> if ( n = X , A , .0. ) e. ( S ` n ) ) |
| 18 | 3 4 | dprddomcld | |- ( ph -> I e. _V ) |
| 19 | 1 | fvexi | |- .0. e. _V |
| 20 | 19 | a1i | |- ( ph -> .0. e. _V ) |
| 21 | eqid | |- ( n e. I |-> if ( n = X , A , .0. ) ) = ( n e. I |-> if ( n = X , A , .0. ) ) |
|
| 22 | 18 20 21 | sniffsupp | |- ( ph -> ( n e. I |-> if ( n = X , A , .0. ) ) finSupp .0. ) |
| 23 | 2 3 4 17 22 | dprdwd | |- ( ph -> ( n e. I |-> if ( n = X , A , .0. ) ) e. W ) |
| 24 | 7 23 | eqeltrid | |- ( ph -> F e. W ) |
| 25 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 26 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 27 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 28 | 3 26 27 | 3syl | |- ( ph -> G e. Mnd ) |
| 29 | 2 3 4 24 25 | dprdff | |- ( ph -> F : I --> ( Base ` G ) ) |
| 30 | 7 | oveq1i | |- ( F supp .0. ) = ( ( n e. I |-> if ( n = X , A , .0. ) ) supp .0. ) |
| 31 | eldifsni | |- ( n e. ( I \ { X } ) -> n =/= X ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ n e. ( I \ { X } ) ) -> n =/= X ) |
| 33 | ifnefalse | |- ( n =/= X -> if ( n = X , A , .0. ) = .0. ) |
|
| 34 | 32 33 | syl | |- ( ( ph /\ n e. ( I \ { X } ) ) -> if ( n = X , A , .0. ) = .0. ) |
| 35 | 34 18 | suppss2 | |- ( ph -> ( ( n e. I |-> if ( n = X , A , .0. ) ) supp .0. ) C_ { X } ) |
| 36 | 30 35 | eqsstrid | |- ( ph -> ( F supp .0. ) C_ { X } ) |
| 37 | 25 1 28 18 5 29 36 | gsumpt | |- ( ph -> ( G gsum F ) = ( F ` X ) ) |
| 38 | iftrue | |- ( n = X -> if ( n = X , A , .0. ) = A ) |
|
| 39 | 7 38 5 6 | fvmptd3 | |- ( ph -> ( F ` X ) = A ) |
| 40 | 37 39 | eqtrd | |- ( ph -> ( G gsum F ) = A ) |
| 41 | 24 40 | jca | |- ( ph -> ( F e. W /\ ( G gsum F ) = A ) ) |