This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubid.b | |- B = ( Base ` G ) |
|
| grpsubid.o | |- .0. = ( 0g ` G ) |
||
| grpsubid.m | |- .- = ( -g ` G ) |
||
| Assertion | grpsubid | |- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubid.b | |- B = ( Base ` G ) |
|
| 2 | grpsubid.o | |- .0. = ( 0g ` G ) |
|
| 3 | grpsubid.m | |- .- = ( -g ` G ) |
|
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 6 | 1 4 5 3 | grpsubval | |- ( ( X e. B /\ X e. B ) -> ( X .- X ) = ( X ( +g ` G ) ( ( invg ` G ) ` X ) ) ) |
| 7 | 6 | anidms | |- ( X e. B -> ( X .- X ) = ( X ( +g ` G ) ( ( invg ` G ) ` X ) ) ) |
| 8 | 7 | adantl | |- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = ( X ( +g ` G ) ( ( invg ` G ) ` X ) ) ) |
| 9 | 1 4 2 5 | grprinv | |- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` X ) ) = .0. ) |
| 10 | 8 9 | eqtrd | |- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = .0. ) |