This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgsubcl.p | |- .- = ( -g ` G ) |
|
| Assertion | subgsubcl | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .- Y ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgsubcl.p | |- .- = ( -g ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | 2 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 4 | 3 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> S C_ ( Base ` G ) ) |
| 5 | simp2 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. S ) |
|
| 6 | 4 5 | sseldd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. ( Base ` G ) ) |
| 7 | simp3 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. S ) |
|
| 8 | 4 7 | sseldd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. ( Base ` G ) ) |
| 9 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 10 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 11 | 2 9 10 1 | grpsubval | |- ( ( X e. ( Base ` G ) /\ Y e. ( Base ` G ) ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 12 | 6 8 11 | syl2anc | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 13 | 10 | subginvcl | |- ( ( S e. ( SubGrp ` G ) /\ Y e. S ) -> ( ( invg ` G ) ` Y ) e. S ) |
| 14 | 13 | 3adant2 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( ( invg ` G ) ` Y ) e. S ) |
| 15 | 9 | subgcl | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ ( ( invg ` G ) ` Y ) e. S ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) e. S ) |
| 16 | 14 15 | syld3an3 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) e. S ) |
| 17 | 12 16 | eqeltrd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .- Y ) e. S ) |