This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubid.b | |- B = ( Base ` G ) |
|
| grpsubid.o | |- .0. = ( 0g ` G ) |
||
| grpsubid.m | |- .- = ( -g ` G ) |
||
| Assertion | grpsubid1 | |- ( ( G e. Grp /\ X e. B ) -> ( X .- .0. ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubid.b | |- B = ( Base ` G ) |
|
| 2 | grpsubid.o | |- .0. = ( 0g ` G ) |
|
| 3 | grpsubid.m | |- .- = ( -g ` G ) |
|
| 4 | id | |- ( X e. B -> X e. B ) |
|
| 5 | 1 2 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 8 | 1 6 7 3 | grpsubval | |- ( ( X e. B /\ .0. e. B ) -> ( X .- .0. ) = ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) ) |
| 9 | 4 5 8 | syl2anr | |- ( ( G e. Grp /\ X e. B ) -> ( X .- .0. ) = ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) ) |
| 10 | 2 7 | grpinvid | |- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 11 | 10 | adantr | |- ( ( G e. Grp /\ X e. B ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 12 | 11 | oveq2d | |- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( ( invg ` G ) ` .0. ) ) = ( X ( +g ` G ) .0. ) ) |
| 13 | 1 6 2 | grprid | |- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) .0. ) = X ) |
| 14 | 9 12 13 | 3eqtrd | |- ( ( G e. Grp /\ X e. B ) -> ( X .- .0. ) = X ) |